

Unity	2017	Mobile	Game	Development

	

	

	

	

	

	

	

Build,	deploy,	and	monetize	games	for	Android	and	iOS	with	Unity

	

	

	

	

	

	

	

John	P.	Doran

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

Unity	2017	Mobile	Game
Development
	

Copyright	©	2017	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval
system,	or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written
permission	of	the	publisher,	except	in	the	case	of	brief	quotations	embedded	in
critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy
of	the	information	presented.	However,	the	information	contained	in	this	book	is
sold	without	warranty,	either	express	or	implied.	Neither	the	author(s),	nor	Packt
Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for	any	damages
caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of
the	companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of
capitals.	However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this
information.

	

First	published:	November	2017

Production	reference:	1281117

	

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham

B3	2PB,	UK.

ISBN	978-1-78728-871-3

	

www.packtpub.com

http://www.packtpub.com

Credits

Author

John	P.	Doran

Copy	Editor

Dhanya	Baburaj

Reviewer

	

Francesco	Sapio

Project	Coordinator

	

Ritika	Manoj

Commissioning	Editor

Smeet	Thakkar

Proofreader

Safis	Editing

Acquisition	Editor

Larissa	Pinto

Indexer

Rekha	Nair

Content	Development	Editor

Arun	Nadar

Graphics

Jason	Monteiro

Technical	Editor

Harshal	Kadam

Production	Coordinator

Nilesh	Mohite

About	the	Author
John	P.	Doran	is	a	passionate	and	seasoned	Technical	Game	Designer,	Software
Engineer,	and	Author	who	is	based	in	Redmond,	Washington.	His	passion	for
game	development	began	at	an	early	age.	He	later	graduated	from	DigiPen
Institute	of	Technology	with	a	Bachelor	of	Science	in	Game	Design.

For	over	a	decade,	John	has	gained	extensive	hands-on	expertise	in	game
development	working	in	various	roles	ranging	from	game	designer	to	lead	UI
programmer	working	in	teams	consisting	of	just	himself	to	over	70	people	in
student,	mod,	and	professional	game	projects	including	working	at	LucasArts	on
Star	Wars:	1313.	Additionally,	John	has	worked	in	game	development	education
teaching	in	Singapore,	South	Korea,	and	the	United	States.	To	date,	he	has
authored	over	10	books	pertaining	to	game	development.

In	addition	to	teaching,	John	is	also	a	part	of	DigiPen’s	Research	and
Development	team.	Prior	to	his	present	ventures,	he	was	an	award-winning
videographer.

About	the	Reviewer
Francesco	Sapio	received	his	Master	of	Science	in	Engineering	in	Artificial
Intelligence	and	Robotics	degree	from	Sapienza	University	of	Rome,	Italy,	a
couple	of	semesters	in	advance,	graduating	summa	cum	laude;	he	is	currently	a
PhD	researcher	at	the	same	university.

He	is	a	Unity	3D	and	Unreal	expert,	skilled	game	designer,	and	experienced	user
of	major	graphics	programs.	He	developed	Game@School	(Sapienza	University
of	Rome),	an	educational	game	for	high-school	students	to	learn	concepts	of
physics,	and	the	Sticker	Book	series	(Dataware	Games),	a	cross-platform	series
of	games	for	kids.	In	addition,	he	worked	as	a	consultant	for	the	(successfully
funded	by	Kickstarter)	game	Prosperity	–	Italy	1434	(Entertainment	Game	Apps,
Inc.)	and	for	an	open	online	collaborative	ideation	system,	titled	Innovoice
(Sapienza	University	of	Rome).	He	has	also	been	involved	in	different	research
projects	such	as	Belief-Driven	Pathfinding	(Sapienza	University	of	Rome),
which	is	a	new	technique	for	path-finding	in	video	games	that	was	presented	as	a
paper	at	the	DiGRAFDG	Conference	2016,	and	perfekt.ID	(Royal	Melbourne
Institute	of	Technology),	which	included	developing	a	recommendation	system
for	games.

Francesco	is	an	active	writer	on	the	topic	of	game	development.	Recently,
Recently,	he	authored	the	book	Getting	Started	with	Unity	5.x	2D	Game
Development	(Packt	Publishing)	that	takes	your	hand	and	guide	you	through	the
amazing	journey	of	game	development,	the	successful	Unity	UI	Cookbook
(Packt	Publishing),	which	has	been	translated	also	in	other	languages,	that
teaches	readers	how	to	develop	exciting	and	practical	user	interfaces	for	games
within	Unity,	and	a	short	e-guide	What	do	you	need	to	know	about	Unity	(Packt
Publishing).	In	addition,	he	co-authored	the	book	Unity	5.x	2D	Game
Development	Blueprints	(Packt	Publishing),	and	the	video	course	Unity	5.x
Game	Development	Projects	(Packt	Publishing).	Furthermore,	he	has	also	been	a
reviewer	for	the	following	books:	Game	Audio	Development	with	Unity	5.x
(Packt	Publishing),	Game	Development	Patterns	and	Best	Practices	(Packt
Publishing),	Game	Physics	Cookbook	(Packt	Publishing),	Mastering	Unity	5.x
(Packt	Publishing),	Unity	5.x	by	Example	(Packt	Publishing),	and	Unity	Game

Development	Scripting	(Packt	Publishing);	as	well	as	for	the	following	video
courses:	Building	an	FPS	Game	with	Unity	and	UFPS	(Packt	Publishing),
Enhancement	with	Unity	UI	Advanced	(Packt	Publishing),	and	Making	Sense	of
Data	with	Java	(Packt	Publishing).

Francesco	is	also	a	musician	and	a	composer,	especially	of	soundtracks	for	short
films	and	video	games.	For	several	years,	he	worked	as	an	actor	and	dancer,
where	he	was	a	guest	of	honor	at	the	Teatro	Brancaccio	in	Rome.	In	addition,	he
has	volunteered	as	a	children's	entertainer	at	the	Associazione	Culturale
Torraccia	in	Rome.	Finally,	Francesco	loves	math,	philosophy,	logic,	and	puzzle
solving,	but	most	of	all,	creating	video	games—thanks	to	his	passion	for	game
designing	and	programming.

I'm	deeply	thankful	to	my	parents	for	their	infinite	patience,	enthusiasm	and
support	throughout	my	life.	Moreover,	I'm	thankful	to	the	rest	of	my	family,	in
particular	to	my	grandparents,	since	they	have	always	encouraged	me	to	do
better	in	my	life	with	the	Latin	expressions	"Ad	maiora"	and	"Per	aspera	ad
astra".

	

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.co
m.
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.Packt
Pub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign
up	for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to
all	Packt	books	and	video	courses,	as	well	as	industry-leading	tools	to	help	you
plan	your	personal	development	and	advance	your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Table	of	Contents

	

Preface
What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support
Downloading	the	example	code

Errata

Piracy

Questions

1.	 Building	Your	Game
Chapter	overview

Your	objectives

Setting	up	the	project

Creating	the	player

Improving	our	scripts	with	attributes	and	XML	comments
Using	attributes

The	Tooltip	attribute

The	Range	attribute

The	RequireComponent	attribute

XML	comments

Putting	it	all	together

Having	the	camera	following	our	player

Creating	a	basic	tile

Making	it	endless

Creating	obstacles

Summary

2.	 Setup	for	Android	and	iOS	Development
Chapter	overview

Our	objectives

Introduction	to	build	settings

Building	a	project	for	PC
Installing	the	Java	Development	Kit	(JDK)

Installing	the	Android	SDK

Exporting	a	project	for	Android

Putting	the	project	on	your	Android	device

Unity	for	iOS	setup	and	Xcode	installation

Building	a	project	for	iOS

Summary

3.	 Mobile	Input/Touch	Controls
Chapter	overview

Our	objectives

Using	mouse	input

Moving	via	touch

Implementing	a	gesture

Using	the	accelerometer

Detecting	touch	on	game	objects

Summary

4.	 Resolution	Independent	UI
The	chapter	overview

Our	objectives

Creating	a	title	screen
The	Rect	Transform	component

Anchors

Pivots

Selecting	different	aspect	ratios

Working	with	buttons

Adding	a	pause	menu

Pausing	the	game

Summary

5.	 Advertising	Using	Unity	Ads
Chapter	overview

Your	objectives

Unity	Ads	setup

Displaying	a	simple	Ad

Utilizing	ad	callback	options

Opt-in	advertisements	with	rewards

Adding	in	a	cooldown

Summary

6.	 Implementing	In-App	Purchases
Chapter	overview

Your	objectives

Setting	up	Unity	IAP

Creating	our	first	purchase

Adding	button	to	restore	purchases

Configuring	purchases	for	the	stores	of	your	choice

Summary

7.	 Getting	Social
Chapter	overview

Your	objectives

Adding	a	score	system

Sharing	high	scores	via	Twitter

Downloading	and	installing	Facebook's	SDK

Logging	in	to	our	game	via	Facebook

Displaying	Facebook	name	and	profile	pic

Summary

8.	 Using	Unity	Analytics
Chapter	overview

Your	objectives

Setting	up	analytics

Tracking	custom	events
Using	the	AnalyticsTracker	component

Customizing	events	through	code

Working	with	the	funnel	analyzer

Tweaking	properties	with	remote	settings

Summary

9.	 Making	Your	Title	Juicy
Chapter	overview

Your	objectives

Animation	using	iTween
iTween	setup

Creating	a	Simple	Tween

Adding	Tweens	to	the	pause	menu

Working	with	materials

Using	post-processing	effects

Adding	particle	effects

Summary

10.	 Game	Build	and	Submission
Chapter	overview

Your	objectives

Building	a	release	copy	of	our	game

Putting	your	game	on	the	Google	Play	Store
Setting	up	the	Google	Play	Console

Publishing	an	app	on	Google	Play

Putting	your	game	on	the	Apple	iOS	App	Store
Apple	Developer	setup	and	the	creation	of	a	provisioning	profile

Adding	an	app	onto	iTunes	Connect

Summary

Preface
As	an	indie	or	AAA	game	developer,	you	want	to	have	your	games	where	your
customers	are.	More	and	more	people	buy	mobile	devices	every	year	and	there's
no	sign	of	this	stopping	any	time	soon.	One	of	the	big	advantages	of	the	Unity
game	engine	is	that	it	is	cross-platform,	making	it	easy	to	write	your	game	once
and	then	port	it	to	other	consoles	with	minimal	changes.	However,	there	are
certain	features	unique	to	working	with	mobile	devices,	which	is	what	this	book
is	about.
Unity	2017	Mobile	Game	Development	will	take	readers	on	an	exploration	of
how	to	use	Unity	when	trying	to	deploy	your	content	to	mobile	devices.	Over	the
course	of	the	book,	we	will	see	how	to	create	a	mobile	game	and	then	see	how	to
deploy	it	to	both	iOS	and	Android.	We	will	explore	how	to	add	input	for	mobile
devices	and	have	the	interface	adapt	to	the	many	different	screen	sizes	that
phones	have.	We'll	then	see	some	ways	to	monetize	our	game	by	discussing
Unity's	in-app	purchase	and	advertisement	systems.	Then,	we	will	see	how	we
can	share	our	game	with	the	world	by	enabling	us	to	use	Twitter	and	Facebook's
SDK.	Afterward,	we	will	see	how	to	work	with	Unity's	analytics	system	and
then	polish	our	title	in	a	number	of	different	ways,	before	putting	it	on	the
Google	Play	and	iOS	App	Stores.

	

What	this	book	covers
Chapter	1,	Building	Your	Game,	covers	the	creation	of	a	simple	project	in	Unity,
which	we	will	be	modifying	over	the	course	of	this	book	to	make	use	of	features
commonly	seen	in	mobile	games.	This	chapter	will	also	serve	as	a	refresher	for
some	fundamental	concepts	when	working	in	Unity.

Chapter	2,	Setup	for	Android	and	iOS	Development,	will	show	the	setup	required	to
deploy	a	project	to	both	iOS	and	Android	mobile	devices,	by	installing	the	Java
and	Android	SDKs	for	Android	and	configuring	Xcode	for	iOS.

Chapter	3,	Mobile	Input/Touch	Controls,	shows	a	number	of	ways	in	which	input
can	work	on	mobile	devices.	Starting	off	with	mouse	events,	we	will	dive	into
recognizing	touch	events	and	gestures,	as	well	as	how	to	use	the	accelerometer
and	accessing	information	using	the	Touch	class.

Chapter	4,	Resolution	Independent	UI,	discusses	how	to	build	the	user	interface	for
our	game,	starting	with	a	title	screen,	and	then	build	the	other	menus	that	we	will
want	to	use	for	our	future	chapters.

Chapter	5,	Advertising	Using	Unity	Ads,	shows	how	to	integrate	Unity's	Ad
framework	into	our	project	and	learn	how	to	create	both	simple	and	complex
versions	of	advertisements.

Chapter	6,	Implementing	In-App	Purchases,	talks	about	how	to	integrate	Unity's	In-
App	Purchase	(IAP)	system	into	our	project	and	take	a	look	at	how	to	create	an
IAP	that	is	used	for	consumable	content	as	well	as	permanent	unlocks.

Chapter	7,	Getting	Social,	shows	how	to	integrate	social	media	into	your	projects,
starting	off	with	sharing	high	scores	using	Twitter	and	then	taking	a	look	at	how
we	can	use	the	Facebook	SDK	in	order	to	display	our	player's	name	and	profile
picture	while	inside	our	game.

Chapter	8,	Using	Unity	Analytics,	covers	some	of	the	different	ways	that	we	can
integrate	Unity's	Analytics	tools	into	our	projects,	tracking	custom	events	as	well
as	using	remote	settings	to	allow	us	to	tweak	gameplay	without	having	people

redownload	the	game	from	the	store.

Chapter	9,	Making	Your	Title	Juicy,	introduces	the	concept	of	making	games	juicy
with	different	ways	that	you	can	integrate	features	of	juiciness	into	our	projects,
including	tweening	animations,	materials,	post-processing	effects,	and	adding
particle	effects.

Chapter	10,	Game	Build	and	Submission,	goes	over	the	process	of	submitting	our
game	to	the	Google	Play	or	iOS	App	Store,	with	tips	and	tricks	to	help	the
process	go	smoother.

What	you	need	for	this	book
	

Throughout	this	book,	we	will	work	within	the	Unity	3D	game	engine,	which
you	can	download	from	http://unity3d.com/unity/download/.	The	projects	were	created
using	Unity	2017.2.0f3,	but	the	project	should	work	with	minimal	changes	in
future	versions	of	the	engine.

For	the	sake	of	simplicity,	we	will	assume	that	you	are	working	on	a	Windows-
powered	computer	when	developing	for	Android	and	a	Macintosh	computer
when	developing	for	iOS.	Though	Unity	allows	you	to	code	in	C#,	Boo,	or
UnityScript,	for	this	book	we	will	be	using	C#.

	

	

	

http://unity3d.com/unity/download/

Who	this	book	is	for
If	you	are	a	Unity	game	developer	and	want	to	build	mobile	games	for	iOS	and
Android,	then	this	is	the	book	for	you.	Previous	knowledge	of	C#	is	helpful,	but
not	required.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between
different	kinds	of	information.	Here	are	some	examples	of	these	styles	and	an
explanation	of	their	meaning.	Code	words	in	text,	database	table	names,	folder
names,	filenames,	file	extensions,	pathnames,	dummy	URLs,	user	input,	and
Twitter	handles	are	shown	as	follows:	"Rename	the	sphere	to	Player	and	set	the
Transform	component's	Position	to	(0,	1,	-4)."

A	block	of	code	is	set	as	follows:

///	<summary>

///	Update	is	called	once	per	frame

///	</summary>

void	Update	()

{

			//	Check	if	target	is	a	valid	object

			if	(target	!=	null)

			{

						//	Set	our	position	to	an	offset	of	our	target

						transform.position	=	target.position	+	offset;

						//	Change	the	rotation	to	face	target

						transform.LookAt(target);

			}

}		

When	we	wish	to	draw	your	attention	to	a	particular	part	of	a	code	block,	the
relevant	lines	or	items	are	set	in	bold:

[Tooltip("How	fast	the	ball	moves	forwards	automatically")]	

				[Range(0,	10)]	

				public	float	rollSpeed	=	5;	

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the
screen,	for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"To
fix	this,	go	to	Window	|	Lighting	|	Settings."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think
about	this	book-what	you	liked	or	disliked.	Reader	feedback	is	important	for	us
as	it	helps	us	develop	titles	that	you	will	really	get	the	most	out	of.	To	send	us
general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the	book's	title
in	the	subject	of	your	message.	If	there	is	a	topic	that	you	have	expertise	in	and
you	are	interested	in	either	writing	or	contributing	to	a	book,	see	our	author
guide	at	www.packtpub.com/authors.

	

http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things
to	help	you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at	http:/
/www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	http://www.pack
tpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.	You	can
download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.

5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the
folder	using	the	latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPublis
hing/Unity-2017-Mobile-Game-Development.	We	also	have	other	code	bundles	from	our
rich	catalog	of	books	and	videos	available	at	https://github.com/PacktPublishing/.	Check
them	out!

	

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Unity-2017-Mobile-Game-Development
https://github.com/PacktPublishing/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,
mistakes	do	happen.	If	you	find	a	mistake	in	one	of	our	books-maybe	a	mistake
in	the	text	or	the	code-we	would	be	grateful	if	you	could	report	this	to	us.	By
doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by
visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,	clicking	on	the
Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once	your
errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be
uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the	Errata
section	of	that	title.	To	view	the	previously	submitted	errata,	go	to	https://www.packtp
ub.com/books/content/support	and	enter	the	name	of	the	book	in	the	search	field.	The
required	information	will	appear	under	the	Errata	section.

	

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all
media.	At	Packt,	we	take	the	protection	of	our	copyright	and	licenses	very
seriously.	If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.	Please	contact	us	at
copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.	We	appreciate
your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

	

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us
at	questions@packtpub.com,	and	we	will	do	our	best	to	address	the	problem.

Building	Your	Game
	

As	we	start	off	on	our	journey	building	mobile	games	using	the	Unity	game
engine,	it's	important	that	readers	are	familiar	with	the	engine	itself	before	we
dive	into	the	specifics	of	building	things	for	mobile	platforms.	Although	there	is
a	chance	that	you've	already	built	a	game	and	want	to	transition	it	to	mobile,
there	will	also	be	readers	who	haven't	touched	Unity	before,	or	may	have	not
used	it	in	a	long	time.	This	chapter	will	act	as	an	introduction	to	newcomers,	a
refresher	for	those	coming	back,	and	will	provide	some	best	practices	for	those
who	are	already	familiar	with	Unity.

In	this	chapter,	we	will	build	a	3-D	endless	runner	game	in	the	same	vein	as
Imangi	Studios,	LLC's	Temple	Run	series.	In	our	case,	we	will	have	a	player	who
will	run	continuously	in	a	certain	direction,	and	will	dodge	obstacles	that	come
in	their	way.	We	can	also	add	additional	features	to	the	game	easily,	as	the	game
will	endlessly	have	new	things	added	to	it.

	

	

	

Chapter	overview
Over	the	course	of	this	chapter,	we	will	create	a	simple	project	in	Unity,	which
we	will	be	modifying	over	the	course	of	this	book	to	make	use	of	features
commonly	seen	in	mobile	games.	While	you	may	skip	this	chapter	if	you're
already	familiar	with	Unity,	I	find	it's	also	a	good	idea	to	go	through	the	project
so	that	you	know	the	thought	processes	behind	why	the	project	is	made	in	the
way	that	it	is,	so	you	can	keep	it	in	mind	for	your	own	future	titles.

	

Your	objectives
	

This	chapter	will	be	split	into	a	number	of	topics.	It	will	contain	a	simple,	step-
by-step	process	from	beginning	to	end.	Here	is	the	outline	of	our	tasks:

Project	setup
Creating	the	player
Improving	scripts	using	attributes
Having	the	camera	follow	the	player
Creating	a	basic	tile
Making	the	game	endless
Creating	obstacles

	

	

Setting	up	the	project
Now	that	we	have	our	goals	in	mind,	let's	start	building	our	project:

1.	 To	get	started,	open	Unity	on	your	computer.	For	the	purpose	of	this	book,
we	will	use	Unity	2017.2.0f3,	but	the	steps	should	work	with	minimal
changes	in	future	versions.

If	you	would	like	to	download	the	exact	version	used	in	this	book,
and	there	is	a	new	version	out,	you	can	visit	Unity's	download
archive	at	https://unity3d.com/get-unity/download/archive.

2.	 From	startup,	we'll	opt	to	create	a	new	project	by	clicking	on	the	New
button.

3.	 Next,	under	Project	name*	put	in	a	name	(I	have	chosen	MobileDev)	and	make
sure	that	3D	is	selected.	If	Enable	Unity	Analytics	is	enabled	(the	check	to
the	left	of	it	says	On),	click	on	the	Enable	Unity	Analytics	button	again	in
order	to	disable	it	for	the	time	being;	we	will	add	it	ourselves	later	on	when
we	go	through	Chapter	5,	Advertising	with	Unity	Ads.	Afterwards,	click	on
Create	project	and	wait	for	Unity	to	load	up:

4.	 After	it's	finished,	you'll	see	the	Unity	Editor	pop	up	for	the	first	time:

https://unity3d.com/get-unity/download/archive

5.	 If	your	layout	doesn't	look	the	same	as	in	the	preceding	screenshot,	you
may	go	to	the	top-right	section	of	the	toolbar	and	select	the	drop-down
menu	there	that	reads	Layers.	From	there,	select	Default	from	the	options
presented.

If	this	is	your	first	time	working	with	Unity,	then	I	highly	suggest
that	you	read	the	Learning	the	Interface	section	of	the	Unity
Manual,	which	you	can	access	at	https://docs.unity3d.com/Manual/Learningth
eInterface.html.

https://docs.unity3d.com/Manual/LearningtheInterface.html

Creating	the	player
Now	that	we	have	Unity	opened	up,	we	can	actually	start	building	our	project.
To	get	started,	let's	build	a	player	that	will	always	move	forward.	Let's	start	with
that	now:

1.	 Let's	create	some	ground	for	our	player	to	walk	on.	To	do	that,	let's	go	to
the	top	menu	and	select	GameObject	|	3D	Object	|	Cube.

2.	 From	there,	let's	move	over	to	the	Inspector	window	and	change	the	name
of	the	object	to	Floor.	Then,	on	the	Transform	component,	set	the	Position	to
(0,	0,	0),	which	we	can	either	type	in,	or	we	can	right-click	on	the
Transform	component	and	then	select	the	Reset	Position	option.

3.	 Then,	we	will	set	the	Scale	to	(7,	0.1,	10):

In	Unity,	by	default,	1	unit	of	space	in	Unity	is	representative	of	1
meter	in	real	life.	This	will	make	the	floor	longer	than	it	is	wide	(X
and	Z),	and	we	have	some	size	on	the	ground	(Y),	so	the	player	will
collide	and	land	on	it	because	we	have	a	Box	Collider	component
attached	to	it.

4.	 Next,	we	will	create	our	player,	which	will	be	a	sphere.	To	do	this,	we	will
go	to	Game	Object	|	3D	Object	|	Sphere.

5.	 Rename	the	sphere	to	Player	and	set	the	Transform	component's	Position	to
(0,	1,	-4):

This	will	place	the	ball	slightly	above	the	ground,	and	shifts	it	back	to
near	the	starting	point.	Note	that	the	camera	object	(you	can	see	a
camera	icon	to	point	it	out)	is	pointing	toward	the	ball	by	default
because	it	is	positioned	at	0,	1,	-10.

6.	 We	want	the	ball	to	move,	so	we	will	need	to	tell	the	physics	engine	that	we
want	to	have	this	object	react	to	forces,	so	we	will	need	to	add	a	Rigidbody
component.	To	do	so,	go	to	the	menu	and	select	Component	|	Physics	|
Rigidbody.	To	see	what	happens	now,	let's	click	on	the	Play	button	that	can
be	seen	in	the	middle	of	the	top	toolbar:

As	you	can	see	in	the	preceding	screenshot,	you	should	see	the	ball
fall	down	onto	the	ground	when	we	play	the	game.

You	can	disable/enable	having	the	Game	tab	take	the	entire	screen
when	being	played	by	clicking	on	the	Maximize	On	Play	button	at
the	top,	or	by	right-clicking	on	the	Game	tab	and	then	selecting
Maximize.

7.	 Click	on	the	Play	button	again	to	turn	the	game	off	and	go	back	to	the
Scene	tab,	if	it	doesn't	happen	automatically.

We	want	to	have	the	player	move,	so	in	order	to	do	that,	we	will
create	our	own	piece	of	functionality	in	a	script,	effectively	creating
our	own	custom	component	in	the	process.

8.	 To	create	a	script,	we	will	go	to	the	Project	window	and	select	Create	|
Folder	on	the	top-left	corner	of	the	menu.	From	there,	we'll	name	this	folder
Scripts.	It's	always	a	good	idea	to	organize	our	projects,	so	this	will	help
with	that.

If	you	happen	to	misspell	the	name,	go	ahead	and	select	the	object

and	then	single-click	on	the	name	and	it'll	let	you	rename	it.

9.	 Double-click	on	the	folder	to	enter	it,	and	now	you	can	create	a	script	by
going	to	Create	|	C#	Script	and	renaming	this	to	PlayerBehaviour	(no	spaces).

The	reason	I'm	using	the	"behaviour",	"spelling"	instead	of
"behavior"	is	that	all	components	in	Unity	are	children	of	another
class	called	MonoBehaviour,	and	I'm	following	Unity's	lead	in	that
regard.

10.	 Double-click	on	the	script	to	open	up	the	script	editor	(IDE)	of	your	choice
and	add	the	following	code	to	it:

using	UnityEngine;	

	

public	class	PlayerBehaviour	:	MonoBehaviour	

{	

				//	A	reference	to	the	Rigidbody	component	

				private	Rigidbody	rb;	

	

				//	How	fast	the	ball	moves	left/right	

				public	float	dodgeSpeed	=	5;	

	

				//	How	fast	the	ball	moves	forwards	automatically	

				public	float	rollSpeed	=	5;	

	

			//	Use	this	for	initialization	

			void	Start	()	

			{	

								//	Get	access	to	our	Rigidbody	component	

								rb	=	GetComponent<Rigidbody>();	

			}	

				

			//	Update	is	called	once	per	frame	

			void	Update	()	

			{	

								//	Check	if	we're	moving	to	the	side	

								var	horizontalSpeed	=	Input.GetAxis("Horizontal")	*	dodgeSpeed;	

								rb.AddForce(horizontalSpeed,	0,	rollSpeed);	

			}	

}

In	the	preceding	code,	we	have	a	couple	of	variables	that	we	will	be
working	with.	The	rb	variable	is	a	reference	to	the	game	object's
Rigidbody	component	that	we	added	previously.	It	gives	us	the	ability
to	make	the	object	move,	which	we	will	use	in	the	Update	function.	We
also	have	two	variables	dodgeSpeed	and	rollSpeed,	which	dictates	how
quickly	the	player	will	move	when	moving	left/right,	or	when
moving	forward,	respectively.

Since	our	object	has	only	one	Rigidbody	component,	we	assign	rb	once
in	the	Start	function,	which	is	called	when	the	game	starts,	as	long	as
the	game	object	attached	to	this	script	is	enabled.

Then,	we	use	the	Update	function	to	check	whether	our	player	is
pressing	keys	to	move	left	or	right	as	based	on	Unity's	Input	Manager
system.	By	default,	the	Input.GetAxis	function	will	return	to	us	a
negative	value	moving	to	-1	if	we	press	A	or	the	left	arrow.	If	we
press	the	right	arrow	or	D,	we	will	get	a	positive	value	up	to	1
returned	to	us,	and	the	input	will	move	toward	a	0	if	nothing	is
pressed.	We	then	multiply	this	by	dodgeSpeed	in	order	to	increase	the
speed	so	that	it	is	easier	to	be	seen.

For	more	information	on	the	Input	Manager,	check	out	https://docs.unit
y3d.com/Manual/class-InputManager.html.

Finally,	once	we	have	that	value,	we	will	apply	a	force	to	our	ball's
horizontalSpeed	units	on	the	X-axis	and	rollSpeed	in	the	Z-axis.

11.	 Save	your	script,	and	return	to	Unity.

12.	 We	will	now	need	to	assign	this	script	to	our	player	by	selecting	the	Player
object	in	the	Hierarchy	window,	and	then	in	the	Inspector	window,	drag	and
drop	the	PlayerBehaviour	script	from	the	Project	window	on	top	of	the	Player
object.	If	all	goes	well,	we	should	see	the	script	appear	on	our	object,	as
follows:

https://docs.unity3d.com/Manual/class-InputManager.html

Note	that	when	writing	scripts	if	we	declare	a	variable	as	public,	it
will	show	up	in	the	Inspector	window	for	us	to	be	able	to	set	it.	We
typically	set	a	variable	as	public	when	we	want	designers	to	tweak
the	values	for	gameplay	purposes.

13.	 Save	your	scene	by	going	to	File	|	Save	Scene.	Create	a	new	folder	called
Scenes	and	save	your	scene	as	Gameplay.	Afterward,	play	the	game	and	use	the
left	and	right	arrows	to	see	the	player	moving	according	to	your	input,	but
no	matter	what,	moving	forward	by	default:

Improving	our	scripts	with	attributes
and	XML	comments
	

We	could	stop	working	with	the	PlayerBehaviour	class	script	here,	but	I	want	to
touch	on	a	couple	of	things	that	we	can	use	in	order	to	improve	the	quality	and
style	of	our	code.	This	becomes	especially	useful	when	you	start	building
projects	in	teams,	as	you'll	be	working	with	other	people--some	of	them	will	be
working	on	code	with	you,	and	then	there	are	designers	and	artists	who	will	not
be	working	on	code	with	you,	but	will	still	need	to	use	the	things	that	you've
programmed.

When	writing	scripts,	we	want	them	to	be	as	error-proof	as	possible.	Making	the
rb	variable	private	starts	that	process,	as	now	the	user	will	not	be	able	to	modify
that	anywhere	outside	of	this	class.	We	want	our	teammates	to	modify	dodgeSpeed
and	rollSpeed,	but	we	may	want	to	give	them	some	advice	as	to	what	it	is	and/or
how	it	will	be	used.	To	do	this	in	the	Inspector	window,	we	can	make	use	of
something	called	an	attribute.

	

	

	

Using	attributes
Attributes	are	things	we	can	add	to	the	beginning	of	a	variable,	class,	or	function
declaration,	which	allow	us	to	attach	an	additional	functionality	to	them.	There
are	many	of	them	that	exist	inside	Unity,	and	you	can	write	your	very	own	as
well,	but,	right	now,	we'll	talk	about	the	ones	that	I	use	most	often.

	

The	Tooltip	attribute
If	you've	used	Unity	for	a	period	of	time,	you	may	have	noted	that	some
components	in	the	Inspector	window,	such	as	the	Rigidbody,	have	a	nice	feature--if
you	move	your	mouse	over	a	variable	name,	you'll	see	a	description	of	what	the
variables	are	and/or	how	to	use	them.	The	first	thing	you'll	learn	is	how	we	can
get	the	same	effect	in	our	own	components	by	making	use	of	the	Tooltip	attribute.
If	we	do	this	for	the	dodgeSpeed	and	rollSpeed	variables,	it	will	look	something	like
this:

[Tooltip("How	fast	the	ball	moves	left/right")]	

public	float	dodgeSpeed	=	5;	

	

[Tooltip("How	fast	the	ball	moves	forwards	automatically")]	

public	float	rollSpeed	=	5;	

	

Save	the	preceding	script	and	return	to	the	editor:

Now,	when	we	highlight	the	variable	using	the	mouse	and	leave	it	there,	the	text
we	placed	will	be	displayed.	This	is	a	great	habit	to	get	into,	as	your	teammates
can	always	tell	what	it	is	that	your	variables	are	being	used	for.

For	more	information	on	the	Tooltip	attribute,	check	out,	https://docs.u
nity3d.com/ScriptReference/TooltipAttribute.html.

https://docs.unity3d.com/ScriptReference/TooltipAttribute.html

The	Range	attribute
Another	thing	that	we	can	use	to	protect	our	code	is	the	Range	attribute.	This	will
allow	us	to	specify	a	minimum	and	maximum	value	for	a	variable.	Since	we
want	the	player	to	always	be	moving	forward,	we	may	want	to	restrict	the	player
from	moving	backward.	To	do	that,	we	can	add	the	following	highlighted	line	of
code:	[Tooltip("How	fast	the	ball	moves	forwards	automatically")]	
[Range(0,	10)]	
public	float	rollSpeed	=	5;

Save	your	script,	and	return	to	the	editor:

We	have	now	added	a	slider	beside	our	value,	and	we	can	drag	it	to	adjust
between	our	minimum	and	maximum	values.	Not	only	does	this	protect	our
variable,	it	also	makes	it	so	our	designers	can	tweak	things	easily	by	just
dragging	them	around.

The	RequireComponent	attribute
Currently,	we	are	using	the	Rigidbody	component	in	order	to	create	our	script.
When	working	as	a	team	member,	others	may	not	be	reading	your	scripts,	but	are
still	expected	to	use	them	when	creating	gameplay.	Unfortunately,	this	means
that	they	may	do	things	that	have	unintended	results,	such	as	removing	the
Rigidbody	component,	which	will	cause	errors	when	our	script	is	run.	Thankfully,
we	also	have	the	RequireComponent	attribute,	which	we	can	use	to	fix	this.

It	looks	something	like	this:

using	UnityEngine;	

	

[RequireComponent(typeof(Rigidbody))]	

public	class	PlayerBehaviour	:	MonoBehaviour	

By	adding	this	attribute,	we	state	that	when	we	add	this	component	to	a	game
object	and	it	doesn't	have	a	Rigidbody	attached	to	its	game	object,	the	component
will	be	added	automatically.	It	also	makes	it	so	that	if	we	were	to	try	to	remove
the	Rigidbody	from	this	object,	the	editor	will	warn	us	that	we	can't,	unless	we
remove	the	PlayerBehaviour	component	first.	Note	that	this	works	for	any	class
extended	from	MonoBehaviour;	just	replace	Rigidbody	with	whatever	it	is	that	you
wish	to	keep.

Now,	if	we	go	into	the	Unity	editor	and	try	to	remove	the	Rigidbody	component	by
right-clicking	on	it	in	the	Inspector	and	selecting	Remove	Component,	the
following	message	will	be	seen:

This	is	exactly	what	we	want,	and	this	ensures	that	the	component	will	be	there,
allowing	us	not	to	have	to	include	if-checks	every	time	we	want	to	use	a

component.

XML	comments
Note	that	previously	we	did	not	use	a	Tooltip	attribute	on	the	private	rb	variable.
Since	it's	not	being	displayed	in	the	editor,	it's	not	really	needed.	However,	there
is	a	way	that	we	can	enhance	that	as	well,	making	use	of	XML	comments.	XML
comments	have	a	couple	of	nice	things	that	we	get	when	using	them	instead	of
traditional	comments,	which	we	were	using	previously.	When	using	the
variables/functions	instead	of	code	in	Visual	Studio,	we	will	now	see	a	comment
about	it.	This	will	help	other	coders	on	your	team	have	additional	information
and	details	to	ensure	that	they	are	using	your	code	correctly.

XML	comments	look	something	like	this:

///	<summary>	

///	A	reference	to	the	Rigidbody	component	

///	</summary>	

private	Rigidbody	rb;

It	may	appear	to	be	a	lot	more	writing	is	needed	to	use	this	format,	but	I	did	not
actually	type	the	entire	thing	out.	XML	comments	are	a	fairly	standard	C#
feature,	so	if	you	are	using	MonoDevelop	or	Visual	Studio	and	type	///,	it	will
automatically	generate	the	summary	blocks	for	you	(and	the	param	tags	needed,	if
there	are	parameters	needed	for	something	like	a	function).

Now,	why	would	we	want	to	do	this?	Well,	now,	if	you	select	the	variable	in
Intellisense,	it	will	display	the	following	information	to	us:

This	is	a	great	help	for	when	other	people	are	trying	to	use	your	code	and	it	is
how	Unity's	staff	write	their	code.	We	can	also	extend	this	to	functions	and
classes	to	ensure	that	our	code	is	more	self-documented.

Unfortunately,	XML	comments	do	not	show	up	in	the	Inspector,	and	the	Tooltip
attribute	doesn't	show	info	in	the	editor.	With	that	in	mind,	I	used	Tooltips	for
public	instructions	and/or	things	that	will	show	up	in	the	Inspector	window,	and
XML	comments	for	everything	else.

If	you're	interested	in	looking	into	XML	comments	more,	feel	free	to
check	out:	https://msdn.microsoft.com/en-us/library/b2s063f7.aspx.

https://msdn.microsoft.com/en-us/library/b2s063f7.aspx

Putting	it	all	together
	

With	all	of	the	stuff	we've	been	talking	about,	we	can	now	have	the	final	version
of	the	script,	which	looks	like	the	following:	using	UnityEngine;	

///	<summary>	
///	Responsible	for	moving	the	player	automatically	and	
///	reciving	input.	
///	</summary>	
[RequireComponent(typeof(Rigidbody))]	

public	class	PlayerBehaviour	:	MonoBehaviour	
{	
///	<summary>	
///	A	reference	to	the	Rigidbody	component	
///	</summary>	
private	Rigidbody	rb;	

[Tooltip("How	fast	the	ball	moves	left/right")]	
public	float	dodgeSpeed	=	5;	

[Tooltip("How	fast	the	ball	moves	forwards	automatically")]	
[Range(0,	10)]	
public	float	rollSpeed	=	5;	

///	<summary>	
///	Use	this	for	initialization	
///	</summary>	
void	Start	()	
{	
//	Get	access	to	our	Rigidbody	component	
rb	=	GetComponent<Rigidbody>();	

}	

///	<summary>	
///	Update	is	called	once	per	frame	
///	</summary>	
void	Update	()	
{	
//	Check	if	we're	moving	to	the	side	
var	horizontalSpeed	=	Input.GetAxis("Horizontal")	*	
dodgeSpeed;	

//	Apply	our	auto-moving	and	movement	forces	
rb.AddForce(horizontalSpeed,	0,	rollSpeed);	
}	
}

I	hope	that	you	also	agree	that	this	makes	the	code	easier	to	understand	and
better	to	work	with.

	

	

	

Having	the	camera	following	our
player
	

Currently,	our	camera	stays	in	the	same	spot	while	the	game	is	going	on.	This
does	not	work	very	well	for	this	game,	as	the	player	will	be	moving	more	the
longer	the	game	is	going	on.	There	are	two	main	ways	that	we	can	move	our
camera.	We	can	just	move	the	camera	and	make	it	a	child	of	the	player,	but	that
will	not	work	due	to	the	ball's	rotation.	Due	to	that,	we	will	likely	want	to	use	a
script	instead.	Thankfully,	we	can	modify	how	our	camera	looks	at	things	fairly
easily,	so	let's	go	ahead	and	fix	that	next:

1.	 Go	to	the	Project	window	and	create	a	new	C#	script	called	CameraBehaviour.
From	there,	use	the	following	code:

using	UnityEngine;	

	

///	<summary>	

///	Will	adjust	the	camera	to	follow	and	face	a	target	

///	</summary>	

public	class	CameraBehaviour	:	MonoBehaviour	

{	

				[Tooltip("What	object	should	the	camera	be	looking	at")]	

				public	Transform	target;	

	

				[Tooltip("How	offset	will	the	camera	be	to	the	target")]	

				public	Vector3	offset	=	new	Vector3(0,	3,	-6);	

	

				///	<summary>	

				///	Update	is	called	once	per	frame	

				///	</summary>	

				void	Update	()																																														

			{	

								//	Check	if	target	is	a	valid	object	

								if	(target	!=	null)	

								{	

												//	Set	our	position	to	an	offset	of	our	target	

												transform.position	=	target.position	+	offset;	

	

												//	Change	the	rotation	to	face	target	

												transform.LookAt(target);	

								}	

	

			}	

}	

2.	 Save	the	script	and	dive	back	into	the	Unity	Editor.	Select	the	Main	Camera
object	in	the	Hierarchy	window.	Then,	go	to	the	Inspector	window	and	add
the	CameraBehaviour	component	to	it.	You	may	do	this	by	dragging	and
dropping	the	script	from	the	Project	window	onto	the	game	object	or	by
clicking	on	the	Add	Component	button	at	the	bottom	of	the	Inspector
window,	typing	in	the	name	of	our	component,	and	then	clicking	on	Enter
to	confirm	once	it	is	highlighted.

3.	 Afterward,	drag	and	drop	the	Player	object	from	the	Hierarchy	window	into
the	Target	property	of	the	script	in	the	Inspector	window:

4.	 Save	the	scene,	and	play	the	game:

The	camera	now	follows	the	player	as	it	moves.	Feel	free	to	tweak	the	variables
and	see	how	it	effects	the	look	of	the	camera	to	get	the	feel	you'd	like	best	for	the
project.

Creating	a	basic	tile
We	want	our	game	to	be	endless,	but	in	order	to	do	so,	we	will	need	to	have
pieces	that	we	can	spawn	to	build	our	environment;	let's	do	that	now:

1.	 To	get	started,	we	will	first	need	to	create	a	single	piece	for	our	runner
game.	To	do	that,	let's	first	add	some	walls	to	the	floor	we	already	have.
From	the	Hierarchy	window,	select	the	Floor	object	and	duplicate	it	by
pressing	Ctrl	+	D	in	Windows	or	command	+	D	on	Mac.	Rename	this	new
object	as	Left	Wall.

	

2.	 Change	the	Left	Wall	object's	Transform	component	by	adjusting	the	Scale	to
(1,	2,	10).	From	there,	select	the	Move	tool	by	clicking	on	the	button	with
arrows	on	the	toolbar	or	by	pressing	the	W	key.

For	more	information	on	Unity's	built-in	hotkeys,	check	out:	https://d
ocs.unity3d.com/Manual/UnityHotkeys.html.

3.	 We	want	this	wall	to	match	up	with	the	floor,	so	hold	down	the	V	key	to
enter	the	Vertex	Snap	mode.

In	the	Vertex	Snap	mode,	we	can	select	any	of	the	vertices	on	a	mesh
and	move	it	to	the	same	position	of	another	vertex	on	a	different
object.	This	is	really	useful	for	making	sure	that	objects	don't	have
holes	between	them.

4.	 With	the	Vertex	Snap	mode	on,	select	the	inner	edge	and	drag	it	until	it	hits
the	edge	of	the	floor.

For	more	info	on	moving	objects	through	the	scene,	including	more
details	on	Vertex	Snap	mode,	check	out	https://docs.unity3d.com/Manual/Pos
itioningGameObjects.html.

https://docs.unity3d.com/Manual/UnityHotkeys.html
https://docs.unity3d.com/Manual/PositioningGameObjects.html

5.	 Then,	duplicate	this	wall	and	put	an	other	on	the	other	side,	naming	it	Right
Wall:

As	you	can	see	in	the	preceding	screenshot,	we	now	protect	the
player	from	falling	off	the	left	and	right	edges	of	the	play	area.	Due	to
how	the	walls	are	set	up,	if	we	move	the	floor	object,	the	walls	will
move	as	well.

For	info	on	moving	Unity's	camera	or	navigating	to	the	scene	view,
check	out:	https://docs.unity3d.com/Manual/SceneViewNavigation.html.

The	way	this	game	is	designed,	after	the	ball	rolls	past	a	single	tile,
we	will	no	longer	need	it	to	be	there	anymore.	If	we	just	leave	it
there,	the	game	will	get	slower	over	time	due	to	us	having	so	many
things	in	the	game	environment	using	memory,	so	it's	a	good	idea	to
remove	assets	we	are	no	longer	using.	We	also	need	to	have	some
way	to	figure	out	when	we	should	spawn	new	tiles	to	continue	the
path	the	player	can	take.

6.	 Now,	we	also	want	to	know	where	this	piece	ends,	so	we'll	add	an	object
with	a	Trigger	collider	in	it.	Select	GameObject	|	Create	Empty	and	name
this	object	Tile	End.

7.	 Then,	we	will	add	a	Box	Collider	component	to	our	Tile	End	object.	Under

https://docs.unity3d.com/Manual/SceneViewNavigation.html

the	Box	Collider	in	the	Inspector	window,	set	the	Size	to	(7,	2,	1)	to	fit	the
size	of	the	space	the	player	can	walk	in.	Note	that	there	is	a	green	box
around	that	space	showing	where	collisions	can	take	place.	Set	the	Position
property	to	(0,	1,	10)	to	reach	past	the	end	of	our	tile.	Finally,	check	the	Is
Trigger	property	so	that	the	collision	engine	will	turn	the	collider	into	a
trigger,	which	will	be	able	to	run	code	events	when	it	is	hit,	but	will	not
prevent	the	player	from	moving:

Like	I	mentioned	briefly	before,	this	trigger	will	be	used	to	tell	the
game	that	our	player	has	finished	walking	over	this	tile.	This	is
positioned	past	the	tile	due	to	the	fact	that	we	want	to	still	see	tiles
until	they	pass	what	the	camera	can	see.	We'll	tell	the	engine	to
remove	this	tile	from	the	game,	but	we	will	dive	more	into	that	later
on	in	the	chapter.

8.	 Now	that	we	have	all	of	the	objects	created,	we	want	to	group	our	objects
together	as	one	piece	that	we	can	create	duplicates	of.	To	do	this,	let's	create
an	Empty	Game	Object	by	going	to	GameObject	|	Create	Empty	and	name
the	newly	created	object	to	Basic	Tile.

9.	 Then,	go	to	the	Hierarchy	window	and	drag	and	drop	the	Floor,	Tile	End,	Left
Wall,	and	Right	Wall	objects	on	top	of	it	to	make	them	children	of	the	Basic
Tile	object.

10.	 Currently,	the	camera	can	see	the	start	of	the	tiles,	so	to	fix	that,	let's	set	the
Basic	Tile's	Position	to	(0,	0,	-5)	so	that	the	entire	tile	will	shift	back.

11.	 Finally,	we	will	need	to	know	at	what	position	we	should	spawn	the	next
piece,	so	create	another	child	of	Basic	Tile,	give	it	the	name,	Next	Spawn	Point,
and	set	its	Position	to	(0,	0,	5).

Note	that	when	we	modify	an	object	that	has	a	parent,	the	position
is	relative	to	the	parent,	not	its	world	position.

Notice	that	the	spawn	point	is	on	the	edge	of	our	current	title.	Now
we	have	a	single	tile	that	is	fully	completed.	Instead	of	duplicating
this	a	number	of	times	by	hand,	we	will	make	use	of	Unity's	concept
or	prefabs.

Prefabs,	or	prefabricated	objects,	are	blueprints	of	game	objects	and
components	that	we	can	turn	into	files,	which	can	be	duplicates.
There	are	other	interesting	features	that	prefabs	have,	but	we	will
discuss	them	as	we	make	use	of	them.

12.	 From	the	Project	window,	go	to	the	Assets	folder	and	then	create	a	new
folder	called	Prefabs.	Then,	drag	and	drop	the	Basic	Tile	object	from	the
Hierarchy	window	to	the	Project	window	inside	the	Prefabs	folder.	If	the	text
on	the	Basic	Tile	name	in	the	Hierarchy	window	becomes	blue,	we	will
know	that	it	was	made	correctly:

With	that,	we	now	have	a	tile	prefab	that	we	can	create	duplicates	of	the	tile
through	code	to	extend	our	environment.

Making	it	endless
Now	that	we	have	a	foundation,	let's	now	make	it	so	that	we	can	continue
running	instead	of	stopping	after	a	short	time:

1.	 To	start	off	with,	we	have	our	prefab,	so	we	can	delete	the	original	Basic	Tile
in	the	Hierarchy	window	by	selecting	it	and	then	pressing	the	Delete	key.

2.	 We	need	to	have	a	place	to	create	all	of	these	tiles	and	potentially	manage
information	for	the	game,	such	as	the	player's	score.	In	Unity,	this	is
typically	referred	to	as	a	GameController.	From	the	Project	window,	go	to	the
Scripts	folder	and	create	a	new	C#	script	called	GameController.

3.	 Open	the	script	in	your	IDE,	and	use	the	following	code:

using	UnityEngine;

///	<summary>	

///	Controls	the	main	gameplay	

///	</summary>	

public	class	GameController	:	MonoBehaviour

{

				[Tooltip("A	reference	to	the	tile	we	want	to	spawn")]

				public	Transform	tile;

				[Tooltip("Where	the	first	tile	should	be	placed	at")]

				public	Vector3	startPoint	=	new	Vector3(0,	0,	-5);

				[Tooltip("How	many	tiles	should	we	create	in	advance")]

				[Range(1,	15)]

				public	int	initSpawnNum	=	10;

				///	<summary>	

				///	Where	the	next	tile	should	be	spawned	at.	

				///	</summary>	

				private	Vector3	nextTileLocation;

				///	<summary>	

				///	How	should	the	next	tile	be	rotated?	

				///	</summary>	

				private	Quaternion	nextTileRotation;

				///	<summary>	

				///	Used	for	initialization	

				///	</summary>	

				void	Start()

				{

								//	Set	our	starting	point	

								nextTileLocation	=	startPoint;

								nextTileRotation	=	Quaternion.identity;

								for	(int	i	=	0;	i	<	initSpawnNum;	++i)

								{

												SpawnNextTile();

								}

				}

				///	<summary>	

				///	Will	spawn	a	tile	at	a	certain	location	and	setup	the	next	position	

				///	</summary>	

				public	void	SpawnNextTile()

				{

								var	newTile	=	Instantiate(tile,	nextTileLocation,	

																																		nextTileRotation);

								//	Figure	out	where	and	at	what	rotation	we	should	spawn	

								//	the	next	item	

								var	nextTile	=	newTile.Find("Next	Spawn	Point");

								nextTileLocation	=	nextTile.position;

								nextTileRotation	=	nextTile.rotation;

				}

}	

This	script	will	spawn	a	number	of	tiles,	one	after	another,	based	on
the	tile	and	initSpawnNum	properties.

4.	 Save	your	script	and	dive	back	into	Unity.	From	there,	create	a	new	Empty
game	object	and	name	it	Game	Controller.	Drag	and	drop	it	to	the	top	of	the
Hierarchy	window.	For	clarity's	sake,	go	ahead	and	reset	the	position	if	you
want	to.	Then,	attach	the	Game	Controller	script	to	the	object	and	then	set
the	Tile	property	by	dragging	and	dropping	the	Basic	Tile	prefab	from	the
Project	window	into	the	Tile	slot:

5.	 Save	your	scene	and	run	the	project:

Great,	but	now	we	will	need	to	create	new	objects	after	these,	but	we
don't	want	to	spawn	a	crazy	number	of	these	at	once.	It's	better	that
once	we	reach	the	end	of	a	tile,	we	create	a	new	tile	and	remove	it.
We'll	work	on	optimizing	this	more	later,	but	that	way	we	always
have	around	the	same	number	of	tiles	in	the	game	at	one	time.

6.	 Go	into	the	Project	window	and	create	a	new	script	called	TileEndBehaviour,
using	the	following	code:

using	UnityEngine;	

	

///	<summary>	

///	Handles	spawning	a	new	tile	and	destroying	this	one		

///	upon	the	player	reaching	the	end	

///	</summary>	

public	class	TileEndBehaviour	:	MonoBehaviour	

{	

				[Tooltip("How	much	time	to	wait	before	destroying	"	+	

													"the	tile	after	reaching	the	end")]	

				public	float	destroyTime	=	1.5f;	

	

				void	OnTriggerEnter(Collider	col)	

				{	

								//	First	check	if	we	collided	with	the	player	

								if	(col.gameObject.GetComponent<PlayerBehaviour>())	

								{	

												//	If	we	did,	spawn	a	new	tile	

												GameObject.FindObjectOfType<GameController>().SpawnNextTile();	

	

												//	And	destroy	this	entire	tile	after	a	short	delay	

												Destroy(transform.parent.gameObject,	destroyTime);	

								}	

				}	

}	

7.	 Now,	to	assign	it	to	the	prefab,	we	can	go	to	the	Project	window	and	then
go	into	the	Prefabs	folder.	From	there,	click	on	the	arrow	beside	the	Basic	Tile
to	open	up	its	objects	and	then	add	a	Tile	End	Behaviour	component	to	the
Tile	End	object:

8.	 Save	your	scene	and	play.

You'll	note	now	that	as	the	player	continues	to	move,	new	tiles	will	spawn	as	you
continue;	if	you	switch	to	the	Scene	tab	while	playing,	you'll	see	that	as	the	ball
passes	the	tiles	they	will	destroy	themselves:

Creating	obstacles
It's	great	that	we	have	some	basic	tiles,	but	it's	a	good	idea	to	give	the	player
something	to	do	or,	in	our	case,	something	to	avoid.	In	this	section,	you'll	learn
how	to	customize	your	tiles	to	add	obstacles	for	your	player	to	avoid:

1.	 So,	just	like	we	created	a	prefab	for	our	basic	tile,	we	will	create	a	single
obstacle	through	code.	I	want	to	make	it	easy	to	see	what	the	obstacle	will
look	like	in	the	world	and	make	sure	that	it's	not	too	large,	so	I'll	drag	and
drop	a	Basic	Tile	prefab	back	into	the	world.

2.	 Next,	we	will	create	a	cube	by	going	to	GameObject	|	3D	Object	|	Cube.	We
will	then	name	this	object	Obstacle.	Change	the	Y	Scale	to	2	and	position	it
above	the	platform	at	(0,	1,	.025):

3.	 We	can	then	play	the	game	to	see	how	this'll	work:

4.	 As	you	can	see	in	the	preceding	screenshot,	the	player	gets	stopped,	but
nothing	really	happens.	In	this	instance,	we	want	the	player	to	lose	when	he
hits	this	and	then	restart	the	game;	so,	to	do	that,	we'll	need	to	write	a	script.
From	the	Project	window,	go	to	the	Scripts	folder	and	create	a	new	script
called	ObstacleBehaviour.	We'll	use	the	following	code:

using	UnityEngine;	

using	UnityEngine.SceneManagement;	//	LoadScene	

	

public	class	ObstacleBehaviour	:	MonoBehaviour	{	

	

				[Tooltip("How	long	to	wait	before	restarting	the	game")]	

				public	float	waitTime	=	2.0f;	

	

				void	OnCollisionEnter(Collision	collision)	

				{	

								//	First	check	if	we	collided	with	the	player	

								if	(collision.gameObject.GetComponent<PlayerBehaviour>())	

								{	

												//	Destroy	the	player	

												Destroy(collision.gameObject);	

	

												//	Call	the	function	ResetGame	after	waitTime	has	passed	

												Invoke("ResetGame",	waitTime);	

								}	

				}	

	

				///	<summary>	

				///	Will	restart	the	currently	loaded	level	

				///	</summary>	

				void	ResetGame()	

				{	

								//	Restarts	the	current	level	

								SceneManager.LoadScene(SceneManager.GetActiveScene().name);	

				}	

}	

5.	 Save	the	script	and	return	to	the	editor,	attaching	the	script	to	the	Obstacle
property	we	just	created.

6.	 Save	your	scene	and	try	the	game:

As	you	can	see	in	the	preceding	screenshot,	once	we	hit	the	obstacle,

the	player	gets	destroyed,	and	then	after	a	few	seconds,	the	game
starts	up	again.	You'll	learn	to	use	particle	systems	and	other	things	to
polish	this	up,	but	at	this	point,	it's	functional,	which	is	what	we	want.

You	may	note	that	when	the	level	is	reloaded,	there	are	some	lighting
issues	in	the	editor.	The	game	will	still	work	correctly	when	exported,
but	this	may	be	a	minor	annoyance.

7.	 (Optional)	To	fix	this,	go	to	Window	|	Lighting	|	Settings.	Uncheck	the
Auto	Generate	option	from	there,	and	click	on	Generate	Lighting--once	it	is
finished,	our	issue	should	be	solved.

It	isn't	an	issue	with	our	game,	but	if	you	employ	the	fix	above	in
your	own	titles,	you	must	remember	to	go	here	every	time	you	alter
a	game	level	and	rebuild	the	lightmap	for	it	to	be	updated	correctly.

8.	 Now	that	we	know	it	works	correctly,	we	can	make	it	a	prefab.	Just	as	we
did	with	the	original	tile,	go	ahead	and	drag	and	drop	it	from	the	Hierarchy
into	the	Project	tab	and	into	the	Prefabs	folder:

9.	 Next,	we	will	remove	the	Obstacle,	as	we'll	spawn	it	upon	creating	the	tile.

10.	 We	will	make	markers	to	indicate	where	we	would	possibly	like	to	spawn
our	obstacles.	Duplicate	the	Next	Spawn	Object	object	and	move	the	new	one	to
(0,	1,	4).	We	will	then	rename	the	object	as	Center.	Afterwards,	click	on	the
icon	on	the	top	left	of	the	blue	box	and	then	select	the	blue	color.	Upon
doing	this,	you'll	see	that	we	can	see	the	text	inside	the	editor,	if	we	are
close	to	the	object	(but	it	won't	show	up	in	the	Game	tab	by	default):

11.	 We	want	a	way	to	get	all	of	the	potential	spawn	points	we	will	want	in	case
we	decide	to	extend	the	project	in	the	future,	so	we	will	assign	a	tag	as	a
reference	to	make	those	objects	easier	to	find.	To	do	that	at	the	top	of	the
Inspector	window,	click	on	the	tag	dropdown	and	select	Add	Tag.	From	the
menu	that	pops	up,	press	the	+	button	and	then	name	it	ObstacleSpawn.

For	more	information	on	tags	and	why	we'd	want	to	use	them,
check	out	https://docs.unity3d.com/Manual/Tags.html.

12.	 Go	ahead	and	duplicate	this	twice	and	name	the	others	Left	and	Right,
respectively,	moving	them	2	units	to	the	left	and	right	of	the	center	to
become	other	possible	obstacle	points:

https://docs.unity3d.com/Manual/Tags.html

13.	 Note	that	these	changes	don't	affect	the	original	prefab,	by	default;	that's
why	the	objects	are	currently	black	text.	To	make	this	happen,	select	Basic
Tile,	and	then	in	the	Inspector	window	under	the	Prefab	section,	click	on
Apply.

14.	 Now	that	the	prefab	is	set	up	correctly,	we	can	go	ahead	and	remove	it	by
selecting	it	and	pressing	Delete.

15.	 We	then	need	to	go	into	the	GameController	script	and	modify	it	to	have	the
following	code:

using	UnityEngine;

using	System.Collections.Generic;	//	List	

///	<summary>	

///	Controls	the	main	gameplay	

///	</summary>	

public	class	GameController	:	MonoBehaviour

{

				[Tooltip("A	reference	to	the	tile	we	want	to	spawn")]

				public	Transform	tile;

				[Tooltip("A	reference	to	the	obstacle	we	want	to	spawn")]

				public	Transform	obstacle;

				[Tooltip("Where	the	first	tile	should	be	placed	at")]

				public	Vector3	startPoint	=	new	Vector3(0,	0,	-5);

				[Tooltip("How	many	tiles	should	we	create	in	advance")]

				[Range(1,	15)]

				public	int	initSpawnNum	=	10;

				[Tooltip("How	many	tiles	to	spawn	initially	with	no	obstacles")]

				public	int	initNoObstacles	=	4;

				///	<summary>	

				///	Where	the	next	tile	should	be	spawned	at.	

				///	</summary>	

				private	Vector3	nextTileLocation;

				///	<summary>	

				///	How	should	the	next	tile	be	rotated?	

				///	</summary>	

				private	Quaternion	nextTileRotation;

				///	<summary>	

				///	Used	for	initialization	

				///	</summary>	

				void	Start()

				{

								//	Set	our	starting	point	

								nextTileLocation	=	startPoint;

								nextTileRotation	=	Quaternion.identity;

								for	(int	i	=	0;	i	<	initSpawnNum;	++i)

								{

												SpawnNextTile(i	>=	initNoObstacles);

								}

				}

				///	<summary>	

				///	Will	spawn	a	tile	at	a	certain	location	and	setup	the	next	

				position	

				///	</summary>	

				public	void	SpawnNextTile(bool	spawnObstacles	=	true)

				{

								var	newTile	=	Instantiate(tile,	nextTileLocation,	

																																		nextTileRotation);

								//	Figure	out	where	and	at	what	rotation	we	should	spawn	

								//	the	next	item	

								var	nextTile	=	newTile.Find("Next	Spawn	Point");

								nextTileLocation	=	nextTile.position;

								nextTileRotation	=	nextTile.rotation;

								if	(!spawnObstacles)

												return;

								//	Now	we	need	to	get	all	of	the	possible	places	to	spawn	the	

								//	obstacle	

								var	obstacleSpawnPoints	=	new	List<GameObject>();

								//	Go	through	each	of	the	child	game	objects	in	our	tile	

								foreach	(Transform	child	in	newTile)

								{

												//	If	it	has	the	ObstacleSpawn	tag	

												if	(child.CompareTag("ObstacleSpawn"))

												{

																//	We	add	it	as	a	possibilty	

																obstacleSpawnPoints.Add(child.gameObject);

												}

								}

								//	Make	sure	there	is	at	least	one	

								if	(obstacleSpawnPoints.Count	>	0)

								{

												//	Get	a	random	object	from	the	ones	we	have	

												var	spawnPoint	=	obstacleSpawnPoints[Random.Range(0,	

																																										obstacleSpawnPoints.Count)];

												//	Store	its	position	for	us	to	use	

												var	spawnPos	=	spawnPoint.transform.position;

												//	Create	our	obstacle	

												var	newObstacle	=	Instantiate(obstacle,	spawnPos,	

																																										Quaternion.identity);

												//	Have	it	parented	to	the	tile

												newObstacle.SetParent(spawnPoint.transform);

								}

				}

}

Note	that	we	modified	the	SpawnNextTile	function	to	now	have	a	default
parameter	set	to	true,	which	will	tell	us	if	we	want	to	spawn	obstacles	or
not.	At	the	beginning	of	the	game,	we	may	not	want	the	player	to	have	to
start	dodging	immediately,	but	we	can	tweak	the	value	to	increase	or
decrease	the	number	we	are	using.

16.	 Save	the	script	and	go	back	to	the	Unity	editor.	Then,	assign	the	Obstacle
variable	in	the	Inspector	with	the	obstacle	prefab	we	created	previously.

17.	 It's	a	bit	hard	to	see	things	currently	due	to	the	default	light	settings,	so	let's
go	to	the	Hierarchy	window	and	select	the	Directional	Light	object.

A	directional	light	acts	similarly	to	how	the	sun	works	on	earth,	shining
everywhere	from	a	certain	rotation.

18.	 With	the	default	settings	the	light	is	too	bright,	making	it	difficult	to	see,	so
we	can	just	change	the	Color	to	be	darker.	I	used	the	following:

19.	 Save	your	scene	and	play	the	game:

For	more	information	on	directional	lights	and	the	other	lighting
types	that	Unity	has,	check	out:	https://unity3d.com/learn/tutorials/topics/grap
hics/light-types?playlist=17102.

As	you	can	see	in	the	preceding	screenshot,	we	now	have	a	number	of	obstacles
for	our	player	to	avoid,	and	due	to	how	the	player	works,	he	will	gradually	get
faster	and	faster,	causing	the	game	to	increase	in	difficulty	over	time.

https://unity3d.com/learn/tutorials/topics/graphics/light-types?playlist=17102

Summary
	

There	we	have	it!	A	solid	foundation,	but	just	that,	a	foundation.	However,	that
being	said,	we	covered	a	lot	of	content	in	this	chapter.	We	discussed	how	to
create	a	new	project	in	Unity,	we	built	a	player	that	will	move	continuously,	as
well	as	take	inputs	to	move	horizontally.	We	then	discussed	how	we	can	use
Unity's	attributes	and	XML	comments	to	improve	our	code	quality	and	help	us
when	working	with	teams.	We	also	covered	how	to	have	a	moving	camera.	We
created	a	tile-based	level	design	system,	where	we	created	new	tiles	as	the	game
continued,	randomly	spawning	obstacles	for	the	player	to	avoid.

Throughout	this	book,	we	will	explore	more	that	we	can	do	to	improve	this
project	and	polish	it,	while	adapting	it	to	being	the	best	experience	possible	on
mobile	platforms.	However,	before	we	get	to	that,	we'll	actually	need	to	figure
out	how	to	deploy	our	projects.

	

	

	

Setup	for	Android	and	iOS
Development
We	now	have	a	project	to	start	off	with,	but	currently	it's	built	with	a	PC	in	mind.
Since	this	book	is	about	mobile	development,	it's	very	important	to	have	the
game	working	on	the	device	itself	before	we	get	too	far	ahead.

Chapter	overview
In	this	chapter,	we	will	go	through	all	of	the	setup	that	we'll	need	in	order	to
deploy	the	project	in	its	current	state	onto	our	mobile	devices.	At	the	time	of
writing	this	book,	mobile	development	is	typically	done	either	for	Android	or
iOS,	so	we	will	cover	that.

	

Our	objectives
	

This	chapter	will	be	split	into	a	number	of	topics.	It	will	contain	a	simple	step-
by-step	process	from	beginning	to	end.	The	following	is	the	outline	of	our	tasks:

Introduction	to	build	settings
Building	a	project	for	a	PC
Installing	the	Java	Development	Kit	and	Android	SDK
Exporting	your	project	for	Android
Putting	the	project	on	your	Android	device
Unity	iOS	installation	and	Xcode	setup
Building	a	project	for	iOS

	

	

Introduction	to	build	settings
There	are	times	during	development	that	you	may	want	to	see	what	your	game
looks	like	if	you	build	it	outside	of	the	editor.	It	can	give	you	a	sense	of
accomplishment;	I	know,	I	felt	that	way	the	first	time	I	pushed	a	build	to	a
console	devkit.	Whether	it's	for	PC,	Mac,	Linux,	web	player,	mobile,	or	console,
we	have	to	go	through	the	same	menu,	the	Build	Settings	menu:

1.	 Start	off	by	opening	up	the	project	that	we	created	in	the	preceding	chapter.
In	addition,	open	the	scene	we	created	(Gameplay.unity,	which	is	inside	the
Scenes	folder):

2.	 From	here,	we	will	open	the	Build	Settings	menu	by	selecting	File	|	Build
Settings.

You	may	alternatively	press	Ctrl	+	Shift	+	B	or	command	+	Shift	+
B	to	bring	the	menu	up	as	well.

In	the	preceding	image,	you	will	notice	the	Build	Settings	menu	came	up.	This
menu	contains	three	sections:

Scenes	in	Build:	This	window	contains	the	scenes	in	our	project	that	we
want	to	include	when	we	build	our	project.	This	ensures	that	things	such	as
test	levels	won't	be	included	unless	you	specify.
Platform:	This	is	a	list	of	all	of	the	platforms	that	you	can	export	your	game
to.	The	Unity	logo	shows	up	on	the	current	platform	you're	compiling	for.
In	order	to	change	your	platform,	you'll	need	to	select	it	from	this	list	and
then	click	on	the	Switch	Platform	button	below	the	list.
Options:	To	the	right	of	the	Platform	section,	you'll	see	some	settings,
which	can	be	tweaked	based	on	how	you	want	the	build	to	work	with
certain	options	that	change	based	on	the	platform	you	will	work	with.

3.	 By	default,	we	have	no	scenes	in	our	build,	so	let's	go	ahead	and	change
that.	Go	ahead	and	click	on	the	Add	Open	Scenes	button;	you	should	see
the	Gameplay	level	appear	in	the	list	at	index	0,	which	means	that	when	your
game	is	played,	this	level	will	be	the	first	one	to	load:

You	may	also	add	scenes	to	the	Scenes	in	Build	section	by	dragging	and
dropping	them	from	the	Project	window.	You	may	also	drag	the	scenes	to	reorder
them	however	you	wish.

Building	a	project	for	PC
By	default,	our	platform	is	set	to	PC,	Mac	&	Linux	Standalone.	Just	to	verify
that	everything	is	working	correctly,	let's	go	ahead	and	get	the	game	working	on
our	own	platform	before	moving	to	mobile:

1.	 To	get	started,	we	will	select	the	Build	option.	In	my	instance,	I'll	be
exporting	our	project	to	Windows,	but	the	process	is	similar	for	Mac	and
Linux.

2.	 Once	this	is	done,	a	window	will	pop	up	asking	for	a	name	and	a	location	to
put	the	game	in.	I'm	going	to	name	it	Endless	and	put	it	in	a	new	Export	folder
located	in	the	same	folder	that	contains	Assets	and	Library,	so	it	won't	show
up	in	the	Project	window,	but	it	will	be	in	the	same	folder	as	my	project:

3.	 Click	on	Save	and	wait	for	it	to	finish.	Once	it's	done,	you	should	have	a
window	appear,	as	follows:

We	have	the	executable,	but	we	also	have	a	data	folder	that	contains
all	the	assets	for	our	application	(right	now,	called	Endless_Data).	You
must	include	the	data	folder	with	your	game,	or	it	will	not	run.

If	you	build	for	Mac,	it	will	bundle	the	app	and	data	all	together,	so
once	you	export	it,	all	you	need	to	provide	is	the	application.

4.	 If	you	double-click	on	the	.exe	file	to	run	the	game,	you'll	be	taken	to	the
following	startup	menu,	as	shown	in	the	following	screenshot:

This	will	allow	players	to	customize	their	Screen	resolution	values	as	well	as
other	options,	such	as	what	buttons	to	use	for	input.	This	menu	will	not	appear
when	exporting	for	mobile.

Anyway,	once	we	click	on	the	Play!	button,	we'll	be	taken	to	the	proper	game
screen,	as	shown	in	the	following	screenshot:	

With	that,	we	should	be	able	to	control	and	play	the	game	as	we	usually	would
do.	This	is	great!

Note	that	if	you	made	the	game	full	screen,	you'll	have	to	use	Alt	+
F4	(command	+	Q	on	Mac)	to	quit	the	game.

Now	that	we	have	talked	about	the	universal	ways	of	building	a	project,	let's
dive	into	specifics	for	different	platforms.	In	this	section,	we	will	discuss	getting
our	project	onto	an	Android	device.

Installing	the	Java	Development	Kit
(JDK)
	

The	first	thing	we'll	need	to	do	is	install	the	Java	Development	Kit,	which
Android	uses	as	their	programming	language:

1.	 First,	we	will	need	to	open	up	our	web	browser	and	visit	Java's	website	at:	h
ttp://www.oracle.com/technetwork/java/javase/downloads/index.html:

2.	 From	the	preceding	page,	we	will	then	locate	the	section	that	says	JDK	and
click	on	the	blue	Download	button:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

3.	 From	there,	we	will	need	to	first	select	the	Accept	License	Agreement
option	and	then	pick	the	download	platform	that	we're	currently	on	and
click	on	it	to	download.

4.	 Once	it's	finished,	open	it	up	and	install	the	project.	If	your	computer	asks
whether	you	want	to	run	the	software,	go	ahead	and	say	Yes:

5.	 Continue	through	the	installation--leave	the	default	values	checked,	install
Java	if	you	need	to,	and	finally,	click	on	Close	when	it's	finished.

	

	

Installing	the	Android	SDK
Now	that	we	have	the	JDK	installed,	we	will	also	need	to	install	the	Android
Software	Development	kit;	let's	do	that	now:

1.	 In	order	to	install	the	Android	SDK	Tools,	we'll	need	to	go	to	the	Android
Studio	page	at:	https://developer.android.com/studio/index.html:

Android	Studio	is	used	to	build	apps	for	Android	devices	when	you're
building	it	from	scratch,	and	it	also	includes	the	Android	SDK	with	a
nice	GUI	for	being	able	to	select	what	parts	we'd	like	to	feature,	so
we	will	be	installing	it.

However,	we	will	not	actually	install	Android	Studio	as	it's	not
needed	for	Unity	development:

2.	 Click	on	the	DOWNLOAD	ANDROID	STUDIO	FOR	WINDOWS	button.
From	there,	you'll	note	that	some	terms	and	conditions	appear.	Go	ahead
and	click	on	the	checkbox	saying	you	agree,	and	from	there,	click	on	the
blue	download	button	below	it:

https://developer.android.com/studio/index.html

3.	 Once	it	is	downloaded,	open	it	and	allow	it	to	run	if	you	get	a	security
warning	and	also	allow	it	to	make	changes	to	your	computer:

4.	 Go	ahead	and	click	on	Next	and	go	through	the	installation.	Note	that	on
one	of	the	screens,	there	is	a	setting	for	the	Android	SDK	Installation
Location.	Save	this,	as	you'll	need	it	later	to	bring	into	Unity.	(In	the

following	screenshot,	it	is	at	C:\Users\netra\AppData\Local\Android\sdk):

5.	 Once	the	installation	finishes,	you'll	note	that	the	Start	Android	Studio
option	is	checked.	Go	ahead	and	click	on	the	Finish	button	and	wait	for	it	to
start.	You'll	see	a	Complete	Installation	button;	go	ahead	and	click	on	OK:

6.	 You'll	then	be	brought	to	a	setup	wizard.	Go	ahead	and	click	on	the	Next
button,	as	follows:

7.	 Select	the	standard	setup,	as	it	will	include	the	items	that	we	will	need	to
export	it	to	Android	in	Unity.	After	clicking	on	Next,	you'll	be	asked	to
verify	that's	what	you	want.	Go	ahead	and	click	on	the	Finish	button	and
wait	for	everything	to	be	downloaded:

8.	 During	installation,	you	may	be	asked	whether	the	Windows	Command
Processor	can	make	changes	to	your	computer.	Go	ahead	and	click	on	Yes.

	

9.	 At	the	end,	you'll	get	a	message	that	should	say	that	everything	was
installed	successfully.	Go	ahead	and	click	on	the	Finish	button,	and	then	on
the	Welcome	Android	Studio	screen,	go	ahead	and	close	the	program	by
clicking	on	the	X	in	the	top-right	corner	of	the	screen:

With	that,	we	now	have	everything	we	need	installed	to	deploy	our	game	to
Android.

Exporting	a	project	for	Android
Now	that	we	have	all	of	the	setup	done,	we	can	open	up	Unity	with	our	project
and	export	it	for	Android	devices:

1.	 First	of	all,	if	you	haven't	done	so	already,	you'll	need	to	have	selected	to
add	Android	Build	Support	as	an	option	when	you	are	installing	Unity.	If
you	did	not	install	it	when	doing	the	initial	installation,	you	may	reinstall
Unity	again	with	those	selections	checked	for	the	platforms	that	you're
trying	to	build	to.

2.	 At	this	point,	we	will	dive	into	Unity	and	then	move	into	our	Build	Settings
menu	once	again	by	going	to	File	|	Build	Settings.

3.	 Click	on	the	Android	option	from	the	Platform	list	and	then	click	on	the
Switch	Platform	button	to	make	the	change.	Note	that	this	will	make	Unity
reimport	all	of	the	assets	in	our	game,	so	this	may	be	time-consuming	as
you	build	larger	projects.

4.	 Now,	in	order	to	be	able	to	build	our	project,	we	must	set	the	bundle
identifier	for	our	game,	which	is	a	string	that	identifies	the	app.	It's	written
like	a	website	in	reverse,	for	example,	com.yourCompanyName.yourGameName.	To
modify	this,	we'll	need	to	open	up	the	Player	Settings	menu,	which	we	can
get	to	by	clicking	on	the	Player	Settings	button	from	the	bottom	of	the
Build	Settings	menu	or	by	going	into	Edit	|	Project	Settings	|	Player.	You'll
note	that	the	menu	shows	up	in	the	Inspector	tab.

5.	 Now	that	we're	in	Android	mode	(note	the	text	on	the	title	bar	of	the	Unity
Editor),	we	can	change	these	properties.	We'll	discuss	more	of	these	in	a
later	chapter,	but	for	right	now,	scroll	down	until	you	get	to	the	Other
Settings	option,	and	from	there,	you'll	see	the	Package	Name	property.	We
will	change	this	to	something	else,	for	example,	I	used
com.JohnPDoran.MobileDev.	There's	also	a	Minimum	API	Level	option;	make
sure	that	your	option	is	set	to	the	same	version	as	your	phone	or	earlier,
depending	on	what	you	want	to	support.	Note	that	the	earlier	you	go,	the
less	things	you'll	have	access	to:

6.	 We	also	need	to	set	the	location	for	Android	SDK.	We	can	do	that	by	going
to	Edit	|	Preferences.	From	there,	go	to	the	External	Tools	section.	Then,	set
the	location	of	the	Android	SDK	to	the	folder	we	specified	earlier,	and	if	it
isn't	set,	go	ahead	and	set	the	JDK	folder	as	well:

7.	 Open	up	the	Build	Settings	menu	again	by	going	to	File	|	Build	Settings.
Now,	we	can	try	to	build	the	project	by	clicking	on	the	Build	button,	saving
it	in	the	same	Export	folder	we	created	earlier.	We	can	even	name	it	Endless
like	we	did	previously,	because	instead	of	an	.exe	file,	it	will	be	creating	a
.apk	file.

If	you	are	using	a	future	version	of	Unity,	this	should	work	perfectly
fine,	and	you	should	be	taken	to	the	folder	in	which	your	game	is
being	exported:

Now,	unfortunately,	with	the	current	version	of	Unity,	there	is	an
issue	causing	Unity	to	not	be	able	to	build	a	project	with	the	latest
version	of	the	Android	SDK.	If	you	are	reading	this	book	when	later
versions	of	Unity	have	come	out,	this	issue	should	be	resolved	and
you	can	skip	the	next	steps,	but	for	those	using	the	version	of	Unity
this	book	was	written	for,	read	on.

For	more	information	on	this	problem,	feel	free	to	visit:	https://issuetra
cker.unity3d.com/issues/android-build-fails-when-the-latest-android-sdk-tools-25-dot-3-1-
version-is-used.

8.	 Download	an	earlier	version	of	the	Android	tools	from:	http://dl-ssl.google.com/an
droid/repository/tools_r25.2.5-windows.zip.

https://issuetracker.unity3d.com/issues/android-build-fails-when-the-latest-android-sdk-tools-25-dot-3-1-version-is-used
http://dl-ssl.google.com/android/repository/tools_r25.2.5-windows.zip

9.	 Go	to	your	Android	SDK	folder	and	rename	the	tools	folder	as	old	tools.
Then,	unzip	the	tools	folder	from	the	link	into	that	location	to	replace	the
SDK	with	a	working	version.

10.	 Now,	build	the	game	again	and	wait	for	it	to	complete	the	operation:

Wait	a	bit	and	once	it's	finished,	you	should	have	a	new	.apk	file	located	in	the
folder.

Putting	the	project	on	your	Android
device
Of	course,	just	having	the	APK	doesn't	do	much	if	we	can't	put	it	on	our	actual
phone;	so,	in	this	section,	we	will	enable	our	phone	to	test	the	game	on	our
device:

1.	 On	your	Android	device,	you'll	need	to	go	to	your	Settings	app.
2.	 From	there,	scroll	down	till	you	get	to	the	Security	|	Security	&	fingerprint

section	or	similar,	and	then	tap	on	it	to	go	into	the	menu.

3.	 Inside	there,	you'll	see	a	section	called	Unknown	sources,	which	you'll	want
to	enable:

With	this	enabled,	your	device	can	now	install	the	.apk	file,	but	now	you	will
need	to	move	your	game	over	onto	the	device	so	that	you	can	install	it.	The
easiest	way	is	to	transfer	it	to	your	device	via	USB;	we'll	do	that	now.

For	those	of	you	who'd	rather	not	use	USB,	I	will	sometimes	use	a
cloud	storage	app,	such	as	Dropbox,	to	upload	my	.apk	file	and	then
download	it	from	the	app	and	then	install	that	way.	There's	also
another	tool	called	ADB,	which	can	send	files	to	your	phone	via
USB	or	Wi-Fi.	For	more	info	on	that	and	the	rest	of	the	Android
build	process,	check	out:	https://docs.unity3d.com/Manual/android-BuildProcess.
html.

4.	 Connect	your	phone	to	your	computer	via	USB.	Upon	being	connected,
your	phone	will	show	a	notification	saying	that	it's	connected	via	USB	for
charging.	Click	on	that	notification	and	change	the	option	to	Transfer	files:

5.	 After	that,	go	back	to	your	computer	and	go	into	Windows	Explorer	|	Finder
and	then	to	the	Devices	and	Drives	section;	you	should	see	your	device
appear	there:

https://docs.unity3d.com/Manual/android-BuildProcess.html

6.	 Double-click	on	your	device	and	access	the	internal	shared	storage	section
from	there.	Then,	drag	the	.apk	file	we	made	before	into	this	folder:

7.	 Now,	back	in	your	phone,	open	the	File	Explorer	app	and	go	to	the	Recent
files	section.	From	there,	click	on	the	app	icon:

8.	 This	will	open	up	the	installer	go	ahead	and	click	on	the	Install	button	and
wait	for	it	to	finish:

Of	course,	I	can't	note	the	steps	to	get	your	phone	on	all	devices	as
some	have	different	drivers	that	are	required	or	additional	steps
that	need	to	be	performed	in	order	to	open	files	on	your	device.	If
these	steps	do	not	work	and	you	do	not	know	how	to	get	files	onto
your	device	and	access	them	and	add	new	ones	to	them,	go	ahead
and	search	for	phone	name	file	transfer,	replacing	the	phone	name
with	your	phone's	name.

9.	 Once	it's	finished,	go	ahead	and	click	on	the	Open	button	to	open	our	game:

As	you	can	see,	the	game	is	on	there	and	it's	working.	Granted,	you	can't	control
it	yet,	and	there's	a	lot	of	new	things	that	you	can	do,	but	this	lets	you	know	that
you've	set	up	our	Android	device	properly.

Unity	for	iOS	setup	and	Xcode
installation
Now	that	you	have	your	game	on	an	Android	device,	you	now	need	to	get	it
working	on	iOS.	With	Android,	there's	a	lot	of	setup,	but	building	and	getting	it
on	your	device	is	more	work,	whereas,	with	iOS,	there's	less	work	on	the	setup
end	and	more	involvement	with	getting	it	actually	onto	the	device.

Previously,	you	had	to	have	a	paid	Apple	Developer	license	in	order	to	get	your
game	onto	an	iOS	device.	Although	that's	still	required	to	get	the	game	on	the
App	Store,	you	are	no	longer	required	to	get	it	for	testing.	Note	that	the	free
option	doesn't	have	everything	available	to	you,	most	notably	IAPs	(In-App
Purchases)	and	the	Game	Center;	however,	for	making	sure	that	it	works	on	your
device,	it'll	work	just	nicely.	We	will	go	over	how	to	adjust	your	project	to	reflect
being	in	the	Apple	Developer	portal	in	the	final	chapter	when	we	go	over	putting
our	project	on	the	App	Store.

To	develop	for	an	iOS	device,	in	addition	to	the	device	itself,	you'll	also	need	to
go	on	a	Mac	computer	that	runs	OS	X	10.11	or	later	version.	I'll	be	using	10.12.3
macOS	Sierra.	Just	like	working	with	Android,	we'll	also	need	to	do	some	setup
before	we	can	actually	do	the	exporting.	Let's	get	started	on	that	now:

1.	 First	of	all,	if	you	haven't	done	so	already,	you'll	need	to	add	iOS	Build
Support	(*)	as	an	option	when	you	are	installing	Unity.	If	you	did	not	install
it	when	doing	the	initial	installation,	you	may	reinstall	Unity	again	with
those	selections	checked	for	the	platforms	that	you're	trying	to	build:

This	makes	it	so	you	can	export	your	projects	for	iOS.	Since	I'll	be
using	my	Windows	machine	mainly,	I'm	only	adding	in	iOS	support,
but	you	can	do	both	from	your	Mac	computer:

2.	 You'll	also	need	to	have	Xcode,	which	is	the	program	used	to	build	iOS
apps.	To	download	it,	you'll	need	to	open	up	the	App	Store	application	on
your	computer.	From	the	search	bar	in	the	top-right	corner,	type	in	Xcode
and	press	Enter:

3.	 From	there,	you'll	see	the	Xcode	program	at	the	top	left	of	the	page--click
on	it	and	then	on	the	Install	button.	You	may	need	to	enter	your	Apple	ID
information;	go	ahead	and	do	so	and	then	wait	for	it	to	finish.

If	you	do	not	have	an	Apple	ID,	you	may	get	one	from:	http://appleid.ap
ple.com/.

4.	 Once	Xcode	is	installed,	open	it	up.	There	will	be	a	license	agreement	for
Xcode	and	the	iOS	SDK;	go	ahead	and	click	on	Agree.	It'll	then	begin
installing	components	that	are	needed	for	it	to	work.

5.	 You'll	then	be	brought	to	a	welcome	screen,	but	we	want	to	do	some	setup
first.	From	the	top	menu	bar,	go	ahead	and	select	Xcode	|	Preferences	(or
press	command	+	,).	From	there,	click	on	the	Accounts	button.	This	will
display	all	of	the	Apple	IDs	that	you	want	to	be	able	to	use	in	Xcode:

http://appleid.apple.com/

6.	 Click	on	the	plus	icon	on	the	bottom	left	of	the	screen	and	then	select	Add
Apple	ID.	From	the	menu	that	pops	up,	go	ahead	and	add	in	your	Apple	ID
info	and	you	should	see	it	appear	on	the	screen.

If	you	select	the	name,	you'll	see	additional	info	on	the	right	side,	such	as	what
teams	you	are	on.	If	you	are	not	enrolled	in	the	Apple	Developer	Program	it'll
just	be	a	personal	team,	but	if	you	are	paying	for	it,	you	should	see	if	there	as
well.

Building	a	project	for	iOS
At	this	point,	we	will	be	building	our	project	for	the	iOS	device.	While	there	are
some	similarities	to	working	with	Android,	there	are	some	differences	that	are
very	important	to	note,	so	keep	that	in	mind	while	reading	this	section.

1.	 At	this	point,	we	will	dive	into	Unity	and	then	move	into	our	Build	Settings
menu	once	again	by	going	to	File	|	Build	Settings.

2.	 Click	on	the	iOS	option	from	the	Platform	list	and	then	click	on	the	Switch
Platform	button	to	make	the	change.

Note	that	this	will	make	Unity	reimport	all	of	the	assets	in	our	game,	so
this	may	be	time-consuming	as	you	build	larger	and	larger	projects.	This
now	also	means	that	when	we	build	our	project,	it	will	create	an	Xcode
project	instead	of	just	an	app,	which	we	will	need	to	open	and	work	with
once	it's	built.

3.	 If	we	didn't	do	so	earlier	when	building	for	iOS,	we	must	set	the	bundle
identifier	for	our	game	at	this	point,	which	is	a	string	that	identifies	the	app.
It's	written	like	a	website	in	reverse,	for	example,
com.yourCompanyName.yourGameName.	To	modify	this,	we'll	need	to	open	up	the
Player	Settings	menu,	which	we	can	get	to	by	clicking	on	the	Player
Settings...	button	in	the	Build	Settings	menu	or	by	going	to	Edit	|	Project
Settings	|	Player.

4.	 Open	up	the	Other	Settings	section,	and	then	put	in	a	value	that	you'd	like
under	Package	Name.

Note	that	if	you	have	already	changed	this	property	when	building
for	Android,	it	will	already	be	done;	there's	no	need	to	do	this
again.

5.	 Now,	we	can	try	to	build	the	project,	saving	it	in	the	same	Export	folder	we
created	earlier--in	this	case,	I	named	it	Endless	iOS--and	then	click	on	Save:

You	can	press	the	down	arrow	button	to	search	for	folders	in	the
Finder	window	that	pops	up.

6.	 Once	the	project	has	been	built,	we	will	be	taken	to	a	Finder	window	at	the
location	we	created	the	project.	From	there,	we	can	double-click	on	the
.xcodeproj	file	to	open	the	project	inside	Xcode:

7.	 In	Xcode,	after	waiting	for	everything	to	load	in,	you'll	notice	a	yellow
triangle	with	an	!	in	the	center	of	it	on	the	top	center	console.	If	you	click
on	it,	you'll	see	some	info	appear	on	the	left-hand	side.	You'll	see	a	yellow
box	open	up	with	a	request	to	make	requested	changes.	Double-click	on	it
and	then	allow	it	to	make	the	automatic	changes:

8.	 Click	on	the	Unity-iPhone	portion	on	the	left	hand	side	and	then	go	down	to
the	Signing	portion	of	the	Build	Settings	options,	and	then	under	Team,	set
it	to	your	profile.

9.	 Once	all	the	preceding	steps	are	done,	plug	in	your	phone	via	USB.	After
loading	all	of	the	symbols	it	needs	(wait	until	the	top	middle	section	says
Ready);	on	the	top	right,	instead	of	Generic	iOS	Device,	change	it	to	the
device	you've	connected.

10.	 Once	you	click	on	the	Play	button,	the	computer	will	ask	whether	you	want
to	enable	Developer	Mode;	to	do	so,	go	ahead	and	select	Enable	and	enter
your	password	when	it	asks	for	it.

11.	 Your	phone	may	be	busy,	so	you	may	need	to	wait	a	bit	before	you're	able
to	build	to	the	device.	You	may	get	a	window	asking	you	to	access	the	key
access	in	your	keychain.	Go	ahead	and	Allow	it.	You'll	also	need	to	unlock
your	phone	at	some	point	as	well,	so	it	may	make	the	install.

12.	 The	app	will	now	be	on	your	iOS	device,	as	you	can	see	by	the	following
screenshot:

Right	now,	it	has	a	generic	Unity	icon	just	like	in	Android,	and	we
will	customize	it	later	on	in	this	book,	but	for	right	now,	we	have	the
following	issue:	the	game	won't	run.

In	order	to	run	the	app,	you	must	verify	that	you	want	the	device	to
be	able	to	run	the	app	to	prevent	security	issues.	To	let	you	know	that
this	is	an	issue,	Xcode	will	give	you	a	warning	that	it	couldn't	launch
it,	so	we'll	need	to	say	we	want	to	be	able	to	run	it:

13.	 From	your	iOS	Device,	open	up	the	Settings	app.	From	there,	go	to	General
|	Device	Management.	Then,	from	the	menu	that	pops	up,	you'll	need	to	say
Trust	"Developer	Name"	with	Developer	Name	being	your	Apple	ID
account.	You'll	need	to	verify	again	that	you	wish	to	trust	apps	created	by
this	account,	so	go	ahead	and	agree,	and	all	of	the	steps	are	done.

14.	 With	that,	exit	out	of	settings	by	clicking	on	the	home	button	and	then	go
over	to	the	location	where	the	app	was	installed	and	tap	on	it	to	run:

With	that,	we	have	the	game	running	on	the	iOS	side	as	well.

Note	that	when	building	in	the	following	manner	without	the	paid
license	apps	will	only	work	for	a	limited	time,	possibly	up	to	a
week.	If	your	game	crashes	immediately	and	it	worked	correctly
beforehand	this	is	most	likely	the	culprit.	Redeploy	to	the	device
again	to	check	if	that	is	the	issue	before	modifying	your	actual
project.

Summary
We	now	have	our	game	running	on	both	Android	and	iOS	devices,	and	we	have
learned	the	steps	that	we'll	need	to	take	each	time	we	want	to	deploy	our	games
on	these	devices.

While	I	will	not	be	writing	about	exporting	to	both	devices	again	until	we	get	to	
Chapter	10,	Game	Build	and	Submission,	it's	a	good	idea	on	your	end	to	do	so	to
see	how	the	changes	that	we	make	will	work	with	both	devices	and	keep	testing
on	each	platform	to	make	sure	that	your	project	works	correctly	and	at	a	frame
rate	that	you	are	okay	with.

This	is	especially	important	to	note	as	running	the	project	on	your	PC	via	the
editor	or	an	emulator	will	not	always	work	the	same	both	ways.	You	may	find
that	certain	things	will	slow	down	your	device	and	make	your	game	choppy.	You
may	also	find	something	that	runs	fine	on	your	mobile	device	will	slow	down
your	computer.	The	thing	is,	you	won't	know	unless	you	are	always	checking	it
out,	so	I	highly	advise	that	you	do	so.

Now	that	we	have	our	game	working	on	a	mobile	device	right	now,	it	currently
will	not	react	to	anything	we	do	due	to	how	we	wrote	our	input	code.	In	the	next
chapter,	we	will	explore	how	we	can	add	input	to	our	project	as	well	as	the
design	considerations	to	make	in	regards	to	how	the	different	forms	of	input	will
change	our	game.

Mobile	Input/Touch	Controls
How	players	interact	with	your	project	is	probably	one	of	the	most	important
things	that	can	be	established	as	a	part	of	your	project.	While	inputting	is	done
for	projects	no	matter	what	platform	you	are	using,	this	is	also	one	area	that	can
make	or	break	your	mobile	title.

If	the	controls	that	are	implemented	don't	fit	the	game	that	you're	making,	or	if
the	controls	feel	clunky,	players	will	not	play	your	game	for	long	stretches	of
time.	While	many	people	consider	Rockstar's	Grand	Theft	Auto	series	of	games
to	be	a	great	on	console	and	PC,	playing	the	game	on	a	mobile	device	provides	a
larger	barrier	of	entry,	due	to	all	of	the	buttons	on	the	screen	and	replacing
joysticks	with	virtual	versions	that	don't	have	haptic	feedback	in	the	same
manner	as	on	other	platforms.

Mobile	and	tablet	games	that	tend	to	do	well	typically	have	controls	that	are
simple,	finding	as	many	ways	to	streamline	the	gameplay	as	possible.	Many
popular	games	require	a	single	input,	such	as	Dong	Nguyen's	Flappy	Bird	and
Ketchapp's	Ballz.

There	are	many	different	ways	for	games	to	interact	with	a	mobile	device,	which
is	different	than	for	traditional	games,	and	we	will	explore	a	number	of	those	in
this	chapter.

Chapter	overview
In	this	chapter,	we	will	cover	the	different	ways	that	inputs	will	work	on	mobile
devices.	We	will	start	off	with	the	input	that	is	already	built	in	to	our	project
using	mice,	and	then	move	on	to	touch	events,	gestures,	using	the	accelerometer,
and	accessing	information	via	the	Touch	class.

	

Our	objectives
This	chapter	will	be	split	into	a	number	of	topics.	It	will	contain	a	simple,	step-
by-step	process	from	beginning	to	end.	Here	is	the	outline	of	our	tasks:

Using	mouse	input	for	mobile	input
Movement	via	touch
Implementing	a	gesture
Using	the	accelerometer
Reacting	to	touch

Using	mouse	input
Now,	before	we	dive	into	mobile-only	solutions,	I	do	want	to	point	out	that	it	is
possible	to	write	inputs	that	work	on	both	mobile	and	PC,	namely	using	mouse
controls.	Mobile	devices	support	using	mouse	clicks	as	taps	on	the	screen,	and
we	can	use	the	mouse	position	as	being	where	the	screen	was	touched.	This
doesn't	give	you	all	of	the	features	that	the	mobile-only	options	do;	we	will	be
discussing	that	later	on	in	this	chapter,	but	I	think	it's	important	to	note,	since	I
use	this	often	for	ease	of	testing	on	both	the	PC	and	on	my	device,	making	it	so	I
don't	have	to	deploy	to	a	mobile	device	to	test	every	single	change	made	in	the
project:

1.	 Inside	Unity,	open	up	your	PlayerBehaviour	script	and	add	the	following
highlighted	code	to	the	Update	function:

void	Update()

				{

								//	Check	if	we're	moving	to	the	side

								var	horizontalSpeed	=	Input.GetAxis("Horizontal")	*

																														dodgeSpeed;

								//	If	the	mouse	is	held	down	(or	the	screen	is	tapped

								//	on	Mobile)

								if	(Input.GetMouseButton(0))

								{

												//	Converts	to	a	0	to	1	scale

												var	worldPos	=	

												Camera.main.ScreenToViewportPoint(Input.mousePosition);

												float	xMove	=	0;

												//	If	we	press	the	right	side	of	the	screen

												if	(worldPos.x	<	0.5f)

												{

																xMove	=	-1;

												}

												else

												{

																//	Otherwise	we're	on	the	left

																xMove	=	1;

												}

												//	replace	horizontalSpeed	with	our	own	value

												horizontalSpeed	=	xMove	*	dodgeSpeed;

								}

								//	Apply	our	auto-moving	and	movement	forces

								rb.AddForce(horizontalSpeed,	0,	rollSpeed);

				}

We	have	added	a	number	of	things	to	the	preceding	script.	Firstly,	we
check	whether	the	mouse	button	had	been	held	down	or	not	through
the	use	of	the	Input.GetMouseButton	function.	The	function	will	return
true	if	the	mouse	is	held	down,	and	false	if	it	is	not.	The	function
takes	in	a	parameter,	which	is	for	what	mouse	button	we'd	like	to
check,	providing	0	for	the	left	button,	1	for	the	right,	and	2	for	the
middle	button.	For	mobile,	however,	only	0	will	be	picked	up	as	a
click.

For	more	info	on	the	Input.GetMouseButton	function,	check	out	https://doc
s.unity3d.com/ScriptReference/Input.GetMouseButton.html.

To	start	off,	we	can	get	the	position	that	the	mouse	is	at	using	the
Input.mousePosition	property.	However,	this	value	is	given	to	us	in
screen	space.	What	is	screen	space?	Well,	let's	first	talk	about	how	we
traditionally	deal	with	positions	in	Unity	making	use	of	world	space.

When	dealing	with	positions	in	Unity	through	the	Inspector	window,
we	have	the	point	(0,0,0)	in	the	middle	of	our	world,	which	we	call
the	origin,	and	then	we	refer	to	everything	else	based	on	an	offset
from	there.	We	typically	refer	to	this	method	of	positioning	as	World
Space.	Assuming	that	we	have	our	camera	pointing	toward	the
origin,	World	Space	looks	like	this:

The	lines	are	the	x,	y,	and	z	axes	of	our	world.	If	I	were	to	move	an
object	to	the	right	or	left,	it	would	move	along	the	X-axis	positively

https://docs.unity3d.com/ScriptReference/Input.GetMouseButton.html

or	negatively,	respectively.	When	in	school,	you	may	have	learned
about	using	graphs	and	points,	and	world	space	works	very	much	like
that.

It's	not	important	for	the	current	conversation,	but	I	should	note
that	children	of	parented	objects	use	a	different	system	in	the
Inspector,	which	is	that	they	are	given	positions	relative	to	their
parent	instead.	This	system	is	called	local	space.

When	using	mouse	input,	Unity	gives	us	this	information	in	another
space,	Screen	Space.	In	this	space,	the	position	is	based	on	where	the
camera	is	and	isn't	involved	with	the	actual	game	world.	This	space	is
also	just	in	2-D,	so	there's	only	an	x	and	y	position	with	z	always
being	stuck	at	0:

In	this	case,	the	bottom	left	of	the	screen	would	be	(0,0)	and	the	top
right	would	be	(Screen.width,	Screen.height).	Screen.width	and
Screen.height	are	values	in	Unity	that	will	give	us	the	screen	size	of	the
screen	window	in	pixels.

We	could	use	these	values	as	provided	and	then	compare	what	side	of
the	screen	the	player	pressed,	but,	in	my	case,	I	think	it'd	be	better	to
convert	the	position	into	an	easier	space	to	work	with.	One	such
space	is	the	Viewport	space,	which	goes	from	(0,0)	to	(1,1):

Note	that	some	of	Unity's	functions	will	use	a	Vector3	instead	of	a
Vector2	in	order	to	work	with	3D	spaces	as	well.

Instead	of	searching	whether	our	x	position	is	less	than	half	of	the
screen	width,	I	can	instead	just	check	whether	it's	less	than	0.5,	which
is	what	we	are	doing	here.	If	the	value	is	less	than	0.5,	it's	on	the	left
side	of	the	screen	so	we	return	-1;	otherwise,	it's	on	the	right	side,	so
we	give	1.

Once	we	know	that,	we	can	then	set	the	horizontal	speed	variable	to
move	to	the	left	or	right	based	on	our	movement.

2.	 Save	the	script	and	dive	back	into	Unity;	you	will	see	the	following:

As	you	can	see	in	the	preceding	screenshot,	we	can	now	use	either	the	mouse
(Input.mousePosition)	or	our	keyboard	(Input.GetAxis)	to	move	our	player.

Moving	via	touch
This	works	well	enough	for	what	we're	doing	right	now,	but	I'm	assuming	that
you'll	want	to	know	how	to	use	the	mobile	device's	own	way	of	moving,	so	we
will	go	ahead	and	learn	how	to	replicate	the	same	functionality	using	touch
instead.

Unity's	Input	engine	has	a	property	called	Input.touches,	which	is	an	array	of	Touch
objects.	The	Touch	struct	contains	information	on	the	touch	that	occurred,	having
information	such	as	the	amount	of	pressure	on	the	touch	and	how	many	times
you	tapped	the	screen.	It	also	contains	the	position	property--like
Input.mousePosition--that	will	tell	you	what	position	the	tap	occurred	at,	in	pixels.

For	more	info	on	the	Touch	struct,	check	out	https://docs.unity3d.com/Scri
ptReference/Touch.html.

To	adjust	our	preceding	code	to	support	touch	instead	of	mouse	inputs,	our	code
could	look	something	like	the	following:

//Check	if	Input	has	registered	more	than	zero	touches

if	(Input.touchCount	>	0)

{

			//Store	the	first	touch	detected.

			Touch	myTouch	=	Input.touches[0];

			//	Converts	to	a	0	to	1	scale

			var	worldPos	=	Camera.main.ScreenToViewportPoint(myTouch.position);

			float	xMove	=	0;

			//	If	we	press	the	right	side	of	the	screen

			if	(worldPos.x	<	0.5f)

			{

						xMove	=	-1;

			}

			else

			{

						//	Otherwise	we're	on	the	left

						xMove	=	1;

			}

			//	replace	horizontalSpeed	with	our	own	value

			horiztonalSpeed	=	xMove	*	dodgeSpeed;

}

https://docs.unity3d.com/ScriptReference/Touch.html

Now,	you	may	note	that	this	code	looks	very	similar	to	what	we've	written	in	the
preceding	section.	With	that	in	mind,	instead	of	copying	and	pasting	the
appropriate	code	twice	and	making	changes	like	a	number	of	starting
programmers	would	do,	we	can	instead	take	the	similarities	and	make	a	function.
For	the	differences,	we	can	use	parameters	to	change	the	value	instead;	consider
the	following	parameters:

1.	 Keeping	that	in	mind,	let's	add	the	following	function	to	the	PlayerBehaviour
class:

///	<summary>	

///	Will	figure	out	where	to	move	the	player	horizontally	

///	</summary>	

///	<param	name="pixelPos">The	position	the	player	has	

///	touched/clicked	on</param>	

///	<returns>The	direction	to	move	in	the	x	axis</returns>	

float	CalculateMovement(Vector3	pixelPos)

{

				//	Converts	to	a	0	to	1	scale	

				var	worldPos	=	Camera.main.ScreenToViewportPoint(pixelPos);

				float	xMove	=	0;

				//	If	we	press	the	right	side	of	the	screen	

				if	(worldPos.x	<	0.5f)

				{

								xMove	=	-1;

				}

				else

				{

								//	Otherwise	we're	on	the	left	

								xMove	=	1;

				}

				//	replace	horizontalSpeed	with	our	own	value	

				return	xMove	*	dodgeSpeed;

}

Now,	instead	of	using	Input.mousePosition	or	the	touch	position,	we
instead	use	a	parameter	for	the	function.	Also,	unlike	previous
functions	we've	written,	this	one	will	actually	use	a	return	value;	in
this	case,	it	will	give	us	a	floating	point	value.	We	will	use	this	value
in	the	Update	to	set	horiztonalSpeed	to	a	new	value	when	this	function	is
called.	Now,	we	can	call	it	appropriately.

2.	 Now,	update	the	Update	function,	as	follows:

///	<summary>	

///	Update	is	called	once	per	frame	

///	</summary>	

void	Update	()	

{	

				//	Movement	in	the	x	axis	

				float	horizontalSpeed	=	0;	

	

				//Check	if	we	are	running	either	in	the	Unity	editor	or	in	a			

				//standalone	build.	

				#if	UNITY_STANDALONE	||	UNITY_WEBPLAYER	

	

				//	Check	if	we're	moving	to	the	side	

				horizontalSpeed	=	Input.GetAxis("Horizontal")	*		

																												dodgeSpeed;	

	

				//	If	the	mouse	is	held	down	(or	the	screen	is	tapped		

				//	on	Mobile)	

				if	(Input.GetMouseButton(0))	

				{	

								horizontalSpeed	=	CalculateMovement(Input.mousePosition);	

				}	

	

				//Check	if	we	are	running	on	a	mobile	device	

				#elif	UNITY_IOS	||	UNITY_ANDROID	

	

				//Check	if	Input	has	registered	more	than	zero	touches	

				if	(Input.touchCount	>	0)	

				{	

								//Store	the	first	touch	detected.	

								Touch	myTouch	=	Input.touches[0];	

								horizontalSpeed	=	CalculateMovement(myTouch.position);	

	

				}	

	

				#endif	

	

				//	Apply	our	auto-moving	and	movement	forces	

				rb.AddForce(horizontalSpeed,	0,	rollSpeed);	

}	

In	the	preceding	example,	I	am	using	a	#if	directive	based	on	the	platform
selected.	Unity	will	automatically	create	a	#define	depending	on	what	has	been
selected	as	the	platform	we	are	deploying	for.	What	this	#if	does,	along	with
#elif	and	#endif,	is	allow	us	to	include	or	exclude	code	from	our	project	based	on
these	symbols.

In	Visual	Studio,	you	may	note	that	if	you're	building	for	iOS	or	Android,	the
code	within	the	UNITY_STANDALONE	section	is	grayed	out,	meaning	that	it	won't	be
called	currently.	However,	if	we	change	our	platform,	the	appropriate	code	will
become	used,	depending	on	the	platform	that	we	would	like	to	create	for.

To	take	a	look	at	all	of	the	other	platform-dependent	#defines,	check
out	https://docs.unity3d.com/Manual/PlatformDependentCompilation.html.

This	will	allow	us	to	specify	code	for	different	versions	of	our	project,	which	is

https://docs.unity3d.com/Manual/PlatformDependentCompilation.html

vital	when	dealing	with	multiplatform	development.

In	addition	to	Unity's	built-in	#defines,	you	can	create	your	own	by
going	to	Edit	|	Project	Settings	|	Player,	scrolling	down	to	Other
Settings	in	the	Inspector	window,	and	changing	the	Scripting
Define	Symbols.	This	can	be	great	for	targeting	specific	devices	or
for	showing	certain	pieces	of	debug	information,	in	addition	to	a
number	of	other	things.

3.	 Save	the	script	and	dive	back	into	Unity.	Upon	exporting	your	game	to	your
Android	device,	you	should	note	that	the	controls	now	work	correctly	using
our	newly	created	touch	code.

Implementing	a	gesture
Another	type	of	input	that	you'll	find	in	mobile	games	is	that	of	a	swipe.	This
will	allow	us	to	use	the	general	movement	of	the	touch	to	dictate	a	direction	for
us	to	move	in.	This	is	usually	used	to	have	our	players	jump	from	one	position	to
another	or	move	quickly	in	a	certain	direction,	so	we'll	go	ahead	and	put	that	in,
instead	of	our	previous	movement	system:

1.	 First,	in	the	PlayerBehaviour	script,	go	ahead	and	add	some	new	variables	for
us	to	work	with:

[Header("Swipe	Properties")]

				[Tooltip("How	far	will	the	player	move	upon	swiping")]

				public	float	swipeMove	=	2f;

				[Tooltip("How	far	must	the	player	swipe	before	we	will	execute	the	action	(in	

pixel	space)")]

				public	float	minSwipeDistance	=	2f;

				///	<summary>	

				///	Stores	the	starting	position	of	mobile	touch	events	

				///	</summary>	

				private	Vector2	touchStart;

In	order	to	determine	whether	we	are	swiping,	we	will	need	to	first
check	the	start	and	the	end	of	our	movement.	We	will	store	the
starting	position	in	the	touchStart	property.	We	will	also	have	the
swipeMove	property	to	set	how	far	we	will	"jump"	when	the	swipe
happens.	Lastly,	we	have	the	minSwipeDistance	variable	which	will	make
sure	that	the	player	has	moved	on	the	x-axis	a	little	before	actually
making	the	jump.

You'll	also	note	that	the	Header	attribute	has	been	added	to	the	top	of
the	first	variable.	This	will	add	a	header	to	the	Inspector	tab,	making
it	easier	to	break	apart	different	sections	of	your	script.	If	you	were	to
save	the	script	and	dive	into	Unity,	you	should	note	that	it	has	been
added	when	you	select	the	player:

2.	 Now,	back	in	the	PlayerBehaviour	script,	update	the	Update	function	to	add	the
following	highlighted	code:

///	<summary>	

///	Update	is	called	once	per	frame	

///	</summary>	

void	Update	()	

{	

				//	Movement	in	the	x	axis	

				float	horizontalSpeed	=	0;	

	

				//	Check	if	we	are	running	either	in	the	Unity	editor		

				//	or	in	a	standalone	build.	

				#if	UNITY_STANDALONE	||	UNITY_WEBPLAYER	||	UNITY_EDITOR

	

				//	Check	if	we're	moving	to	the	side	

				horizontalSpeed	=	Input.GetAxis("Horizontal")	*		

																												dodgeSpeed;	

	

			//	If	the	mouse	is	held	down	(or	the	screen	is	tapped		

			//	on	Mobile)	

				if	(Input.GetMouseButton(0))	

				{	

								horizontalSpeed	=	CalculateMovement(Input.mousePosition);	

				}	

	

				//	Check	if	we	are	running	on	a	mobile	device	

				#elif	UNITY_IOS	||	UNITY_ANDROID	

	

				//	Check	if	Input	has	registered	more	than	zero	touches	

				if	(Input.touchCount	>	0)

				{

								//	Store	the	first	touch	detected.	

								Touch	touch	=	Input.touches[0];

								//	Uncomment	to	use	left	and	right	movement

								//horizontalSpeed	=	CalculateMovement(touch.position);	

								

								SwipeTeleport(touch);	

				}

	

				#endif	

	

				//	Apply	our	auto-moving	and	movement	forces	

				rb.AddForce(horizontalSpeed,	0,	rollSpeed);	

}	

In	the	preceding	code,	we	commented	out	the	CalculateMovement
function	and	instead	added	a	new	behavior	called	SwipeTeleport.	It
hasn't	been	created	yet,	but	this	will	take	in	the	Touch	event	and	use	its
properties	to	move	the	player	if	a	swipe	happens.

3.	 We	will	then	create	a	function	to	handle	this	new	swiping	behavior,	as
follows:

///	<summary>	

				///	Will	teleport	the	player	if	swiped	to	the	left	or	right	

				///	</summary>	

				///	<param	name="touch">Current	touch	event</param>	

				private	void	SwipeTeleport(Touch	touch)

				{

								//	Check	if	the	touch	just	started	

								if	(touch.phase	==	TouchPhase.Began)

								{

												//	If	so,	set	touchStart	

												touchStart	=	touch.position;

								}

								//	If	the	touch	has	ended	

								else	if	(touch.phase	==	TouchPhase.Ended)

								{

												//	Get	the	position	the	touch	ended	at	

												Vector2	touchEnd	=	touch.position;

												//	Calculate	the	difference	between	the	beginning	and	

												//	end	of	the	touch	on	the	x	axis.	

												float	x	=	touchEnd.x	-	touchStart.x;

												//	If	we	are	not	moving	far	enough,	don't	do	the	teleport

												if	(Mathf.Abs(x)	<	minSwipeDistance)

												{

																return;

												}

												Vector3	moveDirection;

												//	If	moved	negatively	in	the	x	axis,	move	left	

												if	(x	<	0)

												{

																moveDirection	=	Vector3.left;

												}

												else

												{

																//	Otherwise	we're	on	the	right	

																moveDirection	=	Vector3.right;

												}

												RaycastHit	hit;

												//	Only	move	if	we	wouldn't	hit	something	

												if	(!rb.SweepTest(moveDirection,	out	hit,	swipeMove))

												{

																//	Move	the	player	

																rb.MovePosition(rb.position	+	(moveDirection	*

																																swipeMove));

												}

								}

				}

In	this	function,	instead	of	just	using	the	current	touch	position,	we
instead	store	the	starting	position	when	the	touch	begins.	When	the
player	lifts	their	finger,	we	get	the	position	as	well.	We	then	get	the
direction	of	that	movement	and	then	apply	that	movement	to	the	ball,
checking	whether	we'll	collide	with	something	before	actually
causing	the	movement.

4.	 Save	your	script	and	dive	back	into	Unity,	exporting	your	project	onto	your
mobile	device.

Now,	whenever	we	swipe	to	the	left	or	right,	the	player	will	move	accordingly.

Using	the	accelerometer
Another	type	of	input	that	mobile	has,	that	PC	doesn't,	is	the	accelerometer.	This
allows	you	to	move	as	the	phone	is	tilted.	The	most	popular	example	of	this	is
likely	the	movement	of	the	player	in	games	such	as	Lima	Sky's	Doodle	Jump.	To
do	something	similar,	we	can	retrieve	the	acceleration	of	our	device	using	the
Input.acceleration	property:

1.	 First,	we	may	want	to	allow	our	designers	to	set	whether	they	want	to	use
this	mode,	or	the	ScreenTouch	we	used	previously.	With	that	in	mind,	let's
create	a	new	enum	with	the	possible	values	to	place	in	the	PlayerBehaviour
script	above	the	Swipe	Properties	header:

public	enum	MobileHorizMovement

{

				Accelerometer,

				ScreenTouch

}	

public	MobileHorizMovement	horizMovement	=	MobileHorizMovement.Accelerometer;

This	gives	us	a	property	called	horizMovement	and	the	two	possibilities
that	it	can	have	given	to	us	by	the	enum	definition	that	we've	made.
Now,	if	you	were	to	save	the	PlayerBehaviour	script	and	dive	back	into
the	Inspector	tab,	you	can	see	we	can	select	one	of	these	two	options
(Accelerometer	or	Screen	Touch).	This	makes	it	so	the	game	designer
of	the	project	can	easily	select	which	of	the	two	options	we'd	like	to
use,	and	then	we	can	expand	to	even	more	if	we'd	like	to	in	the
future:

2.	 Now,	let's	update	the	Update	function	with	the	following	highlighted	code:

//Check	if	we	are	running	on	a	mobile	device	

#elif	UNITY_IOS	||	UNITY_ANDROID

								if(horizMovement	==	MobileHorizMovement.Accelerometer)

								{

												//	Move	player	based	on	direction	of	the	accelerometer

												horizontalSpeed	=	Input.acceleration.x	*	dodgeSpeed;

								}

								//	Check	if	Input	has	registered	more	than	zero	touches	

								if	(Input.touchCount	>	0)

								{

												//	Store	the	first	touch	detected.	

												Touch	touch	=	Input.touches[0];

												if(horizMovement	==	MobileHorizMovement.ScreenTouch)

												{

																horizontalSpeed	=	CalculateMovement(touch.position);	

												}

												SwipeTeleport(touch);	

								}

#endif

This	will	make	use	of	the	acceleration	of	our	device,	instead	of	the
position	or	touch	screen.

3.	 Save	your	script	and	export	the	project.

With	that,	you'll	note	that	we	can	now	tilt	our	screen	to	the	right	or	left	and	the
player	will	move	in	the	appropriate	direction.

In	Unity,	acceleration	is	measured	in	g-force	values	with	1	being	1g	of	force.	If
you	hold	the	device	upright	(with	the	home	button	at	the	bottom)	in	front	of	you,
the	x-axis	is	positive	along	the	right,	the	y-axis	is	positive	upward,	and	the	z-axis
is	positive	when	pointing	toward	you.

For	more	information	on	the	accelerometer,	check	out:	https://docs.unit
y3d.com/Manual/MobileInput.html.

https://docs.unity3d.com/Manual/MobileInput.html

Detecting	touch	on	game	objects
It's	great	to	know	that	our	regular	input	is	working,	but	you	may	want	to	check
whether	a	game	object	in	our	scene	has	been	touched	so	that	we	can	react	to	it.
In	our	case,	to	add	something	else	for	our	player	to	do,	we'll	make	it	so	that	if	the
player	taps	an	obstacle,	it	will	be	destroyed.

1.	 In	the	PlayerBehaviour	script,	add	the	following	new	function:

///	<summary>	

///	Will	determine	if	we	are	touching	a	game	object	and	if	so		

///	call	events	for	it	

///	</summary>	

///	<param	name="touch">Our	touch	event</param>	

private	static	void	TouchObjects(Touch	touch)	

{	

				//	Convert	the	position	into	a	ray	

				Ray	touchRay	=	Camera.main.ScreenPointToRay(touch.position);	

	

				RaycastHit	hit;	

	

				//	Are	we	touching	an	object	with	a	collider?	

				if	(Physics.Raycast(touchRay,	out	hit))	

				{	

								//	Call	the	PlayerTouch	function	if	it	exists	on	a		

								//	component	attached	to	this	object	

								hit.transform.SendMessage("PlayerTouch",		

																										SendMessageOptions.DontRequireReceiver);	

				}	

}	

Here,	we	use	a	different	version	to	determine	collision:	a	raycast.	The
raycast	is	basically	an	invisible	vector	leading	in	a	given	direction,
and	we	will	use	it	to	check	whether	it	collides	with	any	objects	inside
of	our	scenes.	This	is	often	used	in	games,	such	as	first-person
shooters,	to	determine	whether	the	player	has	hit	an	enemy	or	not
without	spawning	a	projectile	and	moving	it	there.

For	more	information	on	raycasting,	check	out	https://docs.unity3d.com/S
criptReference/Physics.Raycast.html.

If	we	do	hit	something,	we	call	a	function	named	SendMessage	on	the
object	that	we	collided	with.	This	function	will	attempt	to	call	a

https://docs.unity3d.com/ScriptReference/Physics.Raycast.html

function	with	the	same	name	as	the	first	parameter	if	it	exists	on	any
component	on	the	game	object.	The	second	parameter	lets	us	know
whether	we	should	display	an	error	if	it	doesn't	exist.

For	more	info	on	the	SendMessage	function,	check	out	https://docs.unity3d.c
om/ScriptReference/GameObject.SendMessage.html.

2.	 Now,	in	the	Update	function,	let's	actually	call	the	above-mentioned	function:

///	<summary>	

				///	Update	is	called	once	per	frame	

				///	</summary>	

				void	Update()

				{

								//	Movement	in	the	x	axis	

								float	horizontalSpeed	=	0;

//Check	if	we	are	running	either	in	the	Unity	editor	or	in	a	standalone	//build.	

#if	UNITY_STANDALONE	||	UNITY_WEBPLAYER		||	UNITY_EDITOR

	

								//	Check	if	we're	moving	to	the	side	

								horizontalSpeed	=	Input.GetAxis("Horizontal")	*	

																												dodgeSpeed;	

	

				//	If	the	mouse	is	held	down	(or	the	screen	is	tapped	

				//	on	Mobile)	

				if	(Input.GetMouseButton(0))	

				{	

								horizontalSpeed	=	CalculateMovement(Input.mousePosition);	

				}	

	

//Check	if	we	are	running	on	a	mobile	device	

#elif	UNITY_IOS	||	UNITY_ANDROID

								if(horizMovement	==	MobileHorizMovement.Accelerometer)

								{

												//	Move	player	based	on	direction	of	the	accelerometer

												horizontalSpeed	=	Input.acceleration.x	*	dodgeSpeed;

								}

								//	Check	if	Input	has	registered	more	than	zero	touches	

								if	(Input.touchCount	>	0)

								{

												//	Store	the	first	touch	detected.	

												Touch	touch	=	Input.touches[0];

												if(horizMovement	==	MobileHorizMovement.ScreenTouch)

												{

																horizontalSpeed	=	CalculateMovement(touch.position);	

												}

												SwipeTeleport(touch);

												TouchObjects(touch);

								}

								#endif

https://docs.unity3d.com/ScriptReference/GameObject.SendMessage.html

								//	Apply	our	auto-moving	and	movement	forces	

								rb.AddForce(horizontalSpeed,	0,	rollSpeed);

				}

3.	 Finally,	we	call	a	PlayerTouch	function	if	it	exists.	So,	let's	open	up	the
ObstacleBehaviour	script	and	add	the	following	code:

public	GameObject	explosion;	

	

///	<summary>	

///	If	the	object	is	tapped,	we	spawn	an	explosion	and		

///	destroy	this	object	

///	</summary>	

void	PlayerTouch()	

{	

				if	(explosion	!=	null)	

				{	

								var	particles	=	Instantiate(explosion,	transform.position,	

																																Quaternion.identity);	

								Destroy(particles,	1.0f);	

				}	

	

				Destroy(this.gameObject);	

}	

This	function	will	basically	destroy	the	game	object	it	is	attached	to
and	create	an	explosion	that	will	also	destroy	itself	after	1	second.

It	is	possible	to	get	similar	results	to	what	we	are	writing	by
making	use	of	Unity's	OnMouseDown	function.	As	we	have	already
discussed,	it	is	possible	to	use	mouse	events	when	developing	for
mobile.	Keep	in	mind,	though,	that	the	use	of	that	function	is	more
computationally	expensive	than	the	method	I'm	suggesting	here.	
This	is	because	when	you	tap	the	screen,	every	object	that	has	an
OnMouseDown	method	will	do	a	raycast	to	check	whether	it	was
touched.	When	you	have	many	objects	on	the	screen,	you'll	note
massive	performance	differences	between	one	raycast	and	one
hundred,	and	it's	important	to	keep	performance	in	mind	when
dealing	with	mobile	development.	For	more	information	on	this,
check	out:	http://answers.unity3d.com/questions/1064394/onmousedown-and-mobile.
html.

4.	 Save	the	scripts	and	dive	back	into	Unity.

We	haven't	created	an	explosion	particle	effect	yet,	so	let's	go	ahead
and	do	that.	To	create	this	effect,	we	will	make	use	of	a	particle

http://answers.unity3d.com/questions/1064394/onmousedown-and-mobile.html

system.	We'll	be	diving	into	particle	systems	at	a	much	deeper	level
in	the	Chapter	9,	Making	Our	Game	Juicy,	but,	for	now,	we	can
consider	a	particle	system	as	a	game	object	that	is	made	as	simply	as
possible	so	that	we	can	spawn	many	of	them	on	the	screen	at	once
without	causing	the	game	to	slow	down	too	much.	This	is	mostly
used	for	things	such	as	smoke	or	fire,	but,	in	this	case,	we	will	have
our	obstacle	explode.

5.	 Create	a	particle	system	by	going	to	GameObject	|	Effects	|	Particle	System.
6.	 Select	the	game	object	in	the	Hierarchy	window	and	then	open	the	Particle

System	component	in	the	Inspector	tab.	In	there,	click	on	the	Renderer
section	and	change	RenderMode	to	Mesh	and	Material	to	Default-Material
by	clicking	on	the	circle	next	to	the	name	and	selecting	it	from	the	menu
that	pops	up:

This	will	make	the	particles	look	like	the	obstacles	that	we've	already
created	as	a	box	with	the	default	material.

7.	 Next,	under	the	top	Particle	System	section,	change	the	Gravity	Modifier
property	to	1.

This	makes	it	so	the	objects	will	fall	over	time,	much	like	normal
objects	with	rigid	bodies	do,	but	with	less	computation.

8.	 Then,	under	Start	Speed,	move	to	the	right	side	and	click	on	the	downward-
facing	arrow,	and	from	that	menu,	select	Random	Between	Two	Constants.
From	there,	set	the	two	values	to	0	and	8.

This	makes	the	objects	spawned	have	starting	speeds	between	0	and	8.

9.	 Then,	change	the	Start	Size	to	something	between	0	and	0.25.
10.	 Afterward,	change	Duration	to	1	and	uncheck	the	Looping	option.	This

makes	it	so	that	the	particle	system	will	last	only	for	1	second,	and
unchecking	looping	means	that	the	particle	system	will	happen	only	once.

11.	 Finally,	change	the	Start	Lifetime	property	to	1	so	that	we	can	ensure	that	all

of	the	particles	will	be	dead	before	the	game	object	is	destroyed.
12.	 Under	the	Emission	section,	change	Rate	over	Time	to	0.	Then,	under

Bursts,	click	on	the	+	button	and	then	set	Min	and	Max	to	50.
13.	 Then,	check	Size	over	Lifetime	and	click	on	the	text	next	to	the	check-mark

to	show	more	details.	From	there,	change	the	Size	property	by	selecting	a
curve	that	decreases	over	time	so	that	at	the	end	they'll	all	be	0:

This	will	make	the	particles	smaller	over	time,	and	they	will	destroy
themselves	only	after	they	become	invisible.

14.	 Finally,	check	the	Collision	property	and	open	it,	setting	the	Type	property
to	World.	This	will	cause	the	particles	to	hit	the	ground.

15.	 Change	the	name	of	the	particle	system	to	Explosion.	Then,	make	your
object	a	prefab	by	dragging	and	dropping	it	from	the	Hierarchy	tab	into	the
Project	tab	in	the	Assets/Prefabs	folder.	Once	the	prefab	is	created,	remove
the	original	from	the	scene	by	selecting	it	and	pressing	the	Delete	key.

16.	 Afterward,	assign	it	to	the	Explosion	property	of	the	Obstacle	Behaviour
(Script)	in	the	Obstacle	prefab:

17.	 Save	your	project	and	export	it	to	your	mobile	device:

From	now	on,	whenever	we	click	on	the	obstacles,	they	will	be	destroyed.

Summary
	

With	that,	we've	covered	the	main	ways	in	which	games	are	controlled	when
working	on	mobile	devices.	In	this	chapter,	we	have	touched	on	how	we	can	use
mouse	inputs,	touch	events,	gestures,	and	the	accelerometer	to	allow	players	to
interact	with	our	game.

In	the	next	chapter,	we	will	explore	the	other	main	way	that	players	interact	with
a	game	by	diving	into	the	world	of	user	interfaces	and	creating	menus	that	can
be	enjoyed,	no	matter	what	device	the	person	is	playing	a	game	on.

	

	

	

Resolution	Independent	UI
When	working	on	mobile	devices,	one	of	the	things	that	you'll	need	to	spend
more	time	on	is	the	user	interface,	or	UI	for	short.	Unlike	when	developing
projects	for	PC,	where	you	need	to	only	care	about	a	single	resolution	or	aspect
ratio,	you	should	keep	in	mind	that	there	are	many	different	devices	out	there
when	building	for	mobile.	For	instance,	we	have	phones,	which	fit	in	our	pocket,
but	also	tablets,	which	are	huge.	Not	only	that,	but	games	can	also	be	played
horizontally	or	vertically.

A	Graphical	User	Interface	(GUI)	is	the	way	that	players	interact	with	your
games.	You've	actually	been	using	a	GUI	in	all	of	the	previous	chapters	(the
Unity	Editor)	and	also	when	interacting	with	your	operating	system.	Without	a
GUI	of	some	sort,	the	only	way	you'd	be	able	to	interact	with	a	computer	is	a
command	prompt,	such	as	DOS	or	UNIX.

When	working	on	GUIs,	we	want	them	to	be	as	intuitive	as	possible	and	only
contain	the	information	that	is	pertinent	to	the	player	at	any	given	time.	There
are	people	whose	main	job	is	programming	and/or	designing	user	interfaces,	and
there	are	college	degrees	on	the	subject	as	well.	So,	while	we	won't	talk	about
everything	that	we	have	to	work	with	using	GUIs,	I	do	want	to	touch	on	the
aspects	that	should	be	quite	helpful	when	working	on	your	own	projects	in	the
future.

When	building	for	mobile,	it's	very	important	that	you	design	your	UI	to	be
resolution	independent,	or	rather	that	the	UI	will	scale	and/or	adjust	itself	to	fit
any	screen	size	that	is	given	to	it.	This	will	not	only	help	us	now,	but	also	in	the
future.

The	chapter	overview
In	this	chapter,	we	will	build	the	user	interface	for	our	game,	starting	with	a	title
screen,	and	then	build	the	other	menus	that	we	will	want	to	use	for	our	future
chapters.

Our	objectives
This	chapter	will	be	split	into	a	number	of	topics.	It	will	contain	a	simple	step-
by-step	process	from	beginning	to	end.	The	following	is	the	outline	of	our	tasks:

Creating	a	title	screen
Adding	UI	elements	to	the	screen
Implementing	a	pause	menu
Restarting	the	game

Creating	a	title	screen
Now,	before	we	start	adding	UI	elements	to	our	game,	let's	first	set	up	some
ground	work	and	foundational	knowledge	by	creating	something	that	we	will
need	anyways,	a	title	screen:

1.	 To	start,	let's	go	ahead	and	create	a	new	scene	for	us	to	work	with	by	going
to	File	|	New	Scene.

When	dealing	with	a	UI,	we	often	will	want	to	see	a	visual
representation	of	what	will	be	drawn	on	the	screen,	so	we	will	want
to	make	use	of	2D	mode	to	have	a	better	representation	of	what	our
UI	will	look	like	in	the	final	version	of	the	game.

2.	 To	do	that,	go	to	the	Scene	view	tab—you'll	see	the	control	bar	menu	with	a
2D	button	on	it	underneath	that.	Click	on	it,	and	you	should	see	the	camera
automatically	move	into	something	that	looks	similar	to	the	following
screenshot:

The	2D	button	switches	the	camera	between	a	2D	and	3D	view.	In	2D
mode,	you'll	note	that	the	Scene	Gizmos	is	gone	due	to	the	fact	that

the	only	option	is	to	look	perpendicularly	at	the	XY	plane	(the	x	axis
pointing	to	the	right	and	the	y	size	pointing	upward)	and	that	our
camera	has	changed	to	an	orthographic	view.

3.	 We	will	first	create	a	text	object	with	the	name	of	our	game.	So,	with	that	in
mind,	let's	go	to	the	menu	and	select	GameObject	|	UI	|	Text.

4.	 This	will	create	three	new	objects,	as	you	can	see	in	the	Hierarchy	view:
Canvas:	This	is	the	area	where	all	of	the	UI	elements	will	reside,	and	if
you	try	to	create	a	UI	element	without	one	existing,	Unity	will	create
one	for	you	like	it	just	did	here.	From	the	Scene	view	tab,	it	will	draw
a	white	rectangle	around	itself	to	show	you	how	large	it	is	and	will
resize	itself	depending	on	how	large	the	Game	view	is:

The	game	object	contains	a	Canvas	component,	which	allows	you
to	dictate	how	the	image	will	be	rendered	(and	a	Canvas	Scaler	to
make	your	art	scale,	depending	on	the	resolution	of	the	device	the
game	is	running	on)	and	the	Graphic	Raycaster,	which	determines
whether	any	objects	on	the	Canvas	has	been	hit.	We	will	dive	into
these	later	on,	but	for	now,	we'll	leave	it	be.

For	more	information	on	the	Canvas	object,	check	out:	http://docs.unit
y3d.com/Manual/UICanvas.html.

http://docs.unity3d.com/Manual/UICanvas.html

Text:	This	object	is	our	actual	text	object,	which	has	all	of	the
properties	to	allow	us	to	position	the	object	anywhere	on	the	Canvas
object	and	change	the	text,	color,	size,	and	so	on	that	will	be	displayed.

EventSystem:	This	object	allows	users	to	send	events	to	objects	in	our
game	based	on	various	input	types	from	keyboard	to	touch	events	to
gamepads.	There	are	properties	in	this	object	that	allow	you	to	specify
how	you'd	like	your	users	to	interface	with	your	UI,	and	if	you	try	to
create	a	UI	element	without	one	existing,	Unity	will	create	one	for	you
like	it	did	here.

For	more	information	on	the	EventSystem	object,	check	out:	http://docs.u
nity3d.com/Manual/EventSystem.html.

5.	 By	default,	you	may	not	see	where	our	textbox	was	created,	so	we	can	go	to
the	Hierarchy	window	and	then	double-click	on	the	Text	object.	If	all	went
well,	we	should	have	something	like	this:

6.	 The	next	thing	we	will	do	is	make	it	easier	to	tell	what	this	object	is.	So,
with	that	in	mind,	scroll	all	the	way	up	on	the	Inspector	tab	with	the	Text
object	selected	and	change	its	name	to	Title	Text.

http://docs.unity3d.com/Manual/EventSystem.html

Currently,	this	object	is	off	the	screen	due	to	it	not	being	within	the	white	box
created	for	the	Canvas.	Instead,	we	would	rather	have	it	positioned	inside	the
screen.	After	this,	we	will	want	to	move	this	object	to	the	proper	place	in	the
Scene;	however,	just	like	in	the	preceding	chapter,	you'll	note	that	instead	of	the
default	Transform	component,	we've	been	seeing	our	text	object	with	a	Rect
Transform	component	in	the	same	place.

The	Rect	Transform	component
The	Rect	Transform	component	is	probably	the	most	different	thing	about
working	in	the	UI	system,	so	it's	a	good	idea	to	learn	as	much	as	we	can	about	it.
The	Rect	Transform	is	different	than	the	regular	Transform	in	that	while	while
the	Transform	component	represents	a	single	point,	or	the	center	of	an	object,	the
Rect	Transform	represents	a	rectangle,	in	which	the	UI	element	will	reside	in.	If
an	object	with	a	Rect	Transform	has	a	parent,	which	also	has	a	Rect	Transform,
the	child	will	specify	how	the	object	should	be	positioned	relative	to	its	parent.

For	more	information	on	positioning	objects	and	information	on
the	Rect	Transform,	check	out:	http://docs.unity3d.com/Manual/UIBasicLayout.
html.

1.	 Now,	to	get	a	better	idea	of	what	the	properties	of	the	Rect	Transform
component	mean,	change	the	Pos	X	and	Pos	Y	values	to	0,	which	will
center	our	object	around	the	object's	anchors;	you	can	then	double-click	on
the	object	in	the	Hierarchy	tab	to	center	the	camera	at	its	new	position:

2.	 Our	object's	anchors	are	visible	from	the	Scene	tab	via	four	small
rectangles,	creating	an	X	shape	in	the	center	of	our	Scene	tab,	if	you	have

http://docs.unity3d.com/Manual/UIBasicLayout.html

the	Title	Text	object	selected	(double-click	on	it	to	center	the	object	on	the
screen).

Like	I	mentioned	previously,	note	that	the	white	box	that	is
displayed	above	for	the	Canvas	may	look	different	on	your	screen
based	on	the	Aspect	Ratio	you've	set	from	the	Game	tab	view	(mine
is	set	to	Free	Aspect,	so	it	scales	based	on	that	to	fill	the	space).	If
you	go	to	the	Game	tab,	you	can	select	them	from	the	drop-down
menu	on	the	left-hand	side.

Anchors
Found	inside	the	Rect	Transform	component,	anchors	give	you	the	ability	to
hold	on	to	a	corner	or	part	of	the	canvas	so	that	if	the	canvas	were	to	move
and/or	change,	the	pieces	of	the	UI	will	stay	in	an	appropriate	place.	These
specify	the	edges	of	your	element	using	a	percentage	of	your	parent's	size.	For
example,	if	we	set	the	Min	X	property	to	0,	the	UI	element	would	stick	to	the	left
edge	of	its	parent.

The	properties	above	the	anchors	are	your	position	relative	to	the	anchor	that	has
been	set.	This	can	be	quite	useful	when	it	comes	to	things	such	as	supporting
multiple	resolutions	without	scaling	the	art	assets	created.	In	our	case,	we	will
want	to	have	our	title	position	itself	relative	to	the	top	of	the	camera:

1.	 Click	on	the	Anchor	Presets	menu	in	the	upper-left	corner	of	the	Rect
Transform	component	(the	box	to	the	left	of	the	Pos	X	and	Width	values).
From	there,	it	shows	some	of	the	most	common	anchor	positions	used	in
games	for	easy	selection.	In	our	case,	we	will	want	to	pick	the	top-center
option:

2.	 Note	that	after	selecting	it,	the	Pos	Y	value	changes	to	another	number	(in

my	case,	-108).	This	is	saying	that	our	object	is	positioned	108	units	below
the	anchor's	y	position	(in	screen	space,	1	unit	is	1	pixel).	If	we	change	the
Pos	Y	value	to	0,	the	object	would	be	centered	along	the	y	axis'	anchor,
which	would	have	the	object	be	placed	with	half	of	it	off	the	screen,	which
is	not	good,	as	you	can	see	in	the	following	example:

I	placed	the	Game	tab	next	to	the	Scene	tab	to	make	it	easier	to	see
the	issue;	you	can	do	this	by	dragging	and	dropping	the	Game	tab	to
the	edge	of	the	screen.

To	reset	any	layout	changes,	you	may	go	to	the	Layout	menu	in	the
top	right	of	the	screen	and	select	Default.

However,	if	we	changed	our	Title	Text	object's	Pos	Y	to	-15
(subtracting	half	its	Height	value),	it	would	be	positioned	correctly.
However,	hardcoding	this	value	will	be	an	issue	if	we	decided	we
want	to	change	the	Height	later	on,	as	we	would	have	to	remember	to
adjust	this	again.	It	would	be	a	lot	nicer	if	we	had	something	to	make
Pos	Y	at	0	the	edge	of	the	map	relative	to	our	height,	and,	thankfully,
we	have	the	Pivot	property	to	fix	that.

3.	 Next,	change	the	Pivot	Y	property	to	1	and	then	change	Pos	Y	to	0	if	you

changed	it	previously	and	it	doesn't	change	automatically:

Pivots
Pivots	are	markers	that	note	where	we	want	things	to	be	in	relation	to	our	object.
This	means	that	objects	will	be	moved,	rotated,	and/or	scaled	via	this	position.
To	note	how	this	changes	the	way	things	react,	try	changing	the	Rotation	Z
property	with	a	Pivot	Y	of	0,	0.5,	and	1,	and	note	the	differences	in	how	things
are	rotated.

Note	that	it	is	possible	to	set	the	Pivot,	Position,	and	Anchors	of	an
object	via	the	Anchors	Preset	menu	I	mentioned	previously	if	you
hold	down	the	Alt	+	Shift	keys	while	clicking	it.	This	way,	all	of	the
steps	we	discussed	will	happen	all	at	once,	but	it's	a	good	idea	to
get	a	foundation	on	what	everything	means	before	jumping	straight
into	using	the	shortcuts.

1.	 Now	that	we	have	our	object	positioned	correctly,	let's	give	it	some	visual
flair.	Select	the	Title	Text	object	from	the	Hierarchy	tab	and	then	move	over
to	the	Inspector	tab	and	scroll	down	to	the	Text	component.	From	there,
change	the	Text	property	to	Endless	Roller	and	set	the	Alignment	property	of
the	object	to	the	center	vertically	and	horizontally.	Afterward,	change	the
Font	Size	to	35.	Note	that	now	the	text	doesn't	show	up	because	we've	made
the	text	too	big	for	the	Rect	Transform	that	we	defined.

2.	 With	that	in	mind,	scroll	up	to	the	Rect	Transform	and	change	the	Width	to
300	and	Height	to	50.	We	will	also	want	it	to	be	offset	from	the	top	of	the
world,	so	let's	change	Pos	Y	to	-30	to	give	it	a	little	offset:

Now,	this	looks	great	for	this	resolution;	however,	if	we	were	to	play
the	game	at	a	larger	resolution,	it	may	look	like	this:

This	can	be	good	if	you're	trying	to	do	a	HUD	in	your	game,	but	for
the	title	screen,	it's	usually	a	good	idea	to	have	things	be	larger;	so
with	that	in	mind,	we	will	use	the	Canvas	Scaler	component	to	adjust
how	the	screen	will	change	based	on	the	resolution	we	give	it.

3.	 Select	the	Canvas	object	from	the	Hierarchy	component	and	then	change	UI
Scale	Mode	to	Scale	with	Screen	Size	in	the	Inspector	from	Canvas	Scaler.

The	key	property	here	is	the	Reference	Resolution.	This	is	the

resolution	that	we	want	to	base	our	menu	on—if	the	resolution	is
bigger,	it	will	scale	up;	if	smaller,	it	will	scale	down.	You	will	likely
have	a	resolution	in	mind	based	on	your	mockups	or	an	image	file
you've	made;	however,	for	reference,	the	following	are	some	of	the
most	common	screen	resolutions	as	at	the	time	of	writing	this	book:

Sample	Apple	device	resolutions:

Device	Name Resolution

iPhone	X 2436	x	1125

iPhone	7	Plus/8	Plus 1080	x	1920

iPhone	7/8 750	x	1334

iPhone	6	Plus/6S	Plus 1080	x	1920

iPhone	6/6S 750	x	1334

iPhone	5 640	x	1136

iPod	Touch 640	x	1136

iPad	Pro 2048	x	2732

iPad	3/4 1536	x	2048

iPad	Air	1	&	2 1536	x	2048

iPad	Mini 768	x	1024

iPad	Mini	2	&	3 1536	x	2048

	

Sample	Android	device	resolutions:

Device	Name Resolution

Samsung	Galaxy	S8/S8+ 2960	x	1440

Google	Pixel	2	XL 2560	x	1312

Nexus	6P 1440	x	2560

Nexus	5X 1080	x	1920

Google	Pixel/Pixel	2 1080	x	1920

Google	Pixel	XL/Pixel	2	XL 1440	x	2560

Samsung	Galaxy	Note	5 1440	x	2560

LG	G5 1440	x	2560

One	Plus	3 1080	x	1920

Samsung	Galaxy	S7 1440	x	2560

Samsung	Galaxy	S7	Edge 1440	x	2560

Nexus	7	(2013) 1200	x	1920

Nexus	9 1536	x	2048

Samsung	Galaxy	Tab	10 800	x	1280

Chromebook	Pixel 2560	x	1700

To	see	an	up-to-date	listing	of	cell	phone	screen	resolutions,	check
out:	http://mobiphonespec.com/cellphone-screen-resolution-by-size.php.

I	am	using	a	One	Plus	3	and	an	iPhone	6S	Plus,	and	both	of	them	has
a	1920	x	1080	resolution,	so	I	think	that	would	be	a	good	place	to
start.	However,	if	you	are	creating	art	assets,	it's	a	good	idea	to	create
the	UI	at	the	largest	resolution	you	plan	on	supporting	and	then	build
for	other	resolutions	from	there.

http://mobiphonespec.com/cellphone-screen-resolution-by-size.php

Unity	has	some	of	the	most	common	resolutions	built-in,	which	can
be	seen/changed	from	the	drop	down	in	the	Game	tab	view
mentioned	previously.

4.	 In	the	Inspector	view,	go	to	the	Canvas	Scaler	component	and	change	the
Reference	Resolution	to	1920	x	1080	if	it	isn't	there	already.

5.	 Next,	under	Match,	move	it	all	the	way	over	to	Height.	This	will	ensure	that
when	the	height	of	our	screen	changes,	that's	when	we	will	scale.

6.	 Next,	let's	make	the	text	a	bit	larger.	Select	the	Title	Text	object	and	from	the
Rect	Transform	change	the	Width	to	1000	and	Height	to	200,	and	then	change
the	Text	component's	Font	Size	to	130:

7.	 Now,	if	we	play	the	game	with	a	higher	resolution,	it	will	display	our	title
nicely,	scaling	up	to	fit	the	larger	size	that	we	have:

8.	 Go	to	the	Game	view	control	bar	and	pick	a	smaller	resolution,	such	as	the
HVGA	Landscape	(480x320),	and	you'll	note	that	the	text	will	scale	down
to	fit	nicely	as	well:

For	more	information	on	the	Canvas	Scaler,	check	out:	http://docs.unit
y3d.com/Manual/script-CanvasScaler.html.

http://docs.unity3d.com/Manual/script-CanvasScaler.html

Selecting	different	aspect	ratios
Like	I	mentioned	previously,	in	the	Game	view,	if	we	go	to	the	control	bar	and
select	the	first	option,	there	is	a	drop-down	menu	where	we	can	pick	different
resolutions	to	test	our	game,	so	we	can	find	potential	issues	before	exporting	it	to
our	devices.	There	are	a	number	of	them	built-in	for	us	by	default,	but	we	can
also	make	our	own	using	the	+	button	at	the	bottom.	I	suggest	that	you	make	two
new	selections	for	your	phone	in	the	landscape	and	for	portrait	mode	at	the
resolutions	you	are	trying	to	reach	(in	my	case,	1920	x	1080	and	1080	x	1920).

1.	 So,	at	this	point,	we	can	see	that	at	a	landscape	ratio,	it	works	fairly	well,
but	let's	try	a	portrait	one:

Ooops.	Currently	the	text	is	overflowing	past	the	bounds	of	the	screen.	Looks	like	we	will	have	to	fix	that.

2.	 Select	the	Title	Text	object,	and	check	the	Best	Fit	property	in	the	Inspector
tab	under	the	Text	component.

This	automatically	scales	the	text	to	fit	the	space	we	have	if	the	width
and	height	were	to	change,	which	they	currently	don't,	but	we	will
change	that	next.

3.	 Now,	go	to	the	RectTransform	component,	and	under	Anchors,	change	the
Min	X	to	0.25	and	Max	X	to	0.75:

Note	that	now	our	RectTransform	changed	the	Pos	X	and	Width
values.	They	have	now	been	replaced	with	Left	and	Right	properties,
which	are	currently	set	to	-500	and	-500.	This	means	that	the	area	being
taken	up	by	this	is	-500	units	away	from	our	anchor	at	25%	and	-500
units	away	from	our	max	anchor	at	75%.	We	want	the	screen	to	resize
to	be	at	those	anchors,	so	we	will	change	both	the	Left	and	Right
values	to	0.

4.	 Save	our	scene	as	a	new	file	inside	the	Scenes	folder	called	MainMenu,	and	then
play	the	game:

As	you	can	see	in	the	preceding	screenshot,	the	text	now	fits	a	lot	nicer.	You'll
also	note	that	no	matter	what	resolution	we	are	using,	this	text	takes	up	a	good
size	of	its	fitting	of	a	game's	title.

Working	with	buttons
Now	that	we	have	the	text	displaying	correctly,	let's	add	the	ability	to	move	from
the	main	menu	into	the	game	properly.	However,	unlike	our	title,	for	things	that
we	want	our	players	to	touch,	it's	a	good	idea	to	make	these	buttons	the	same
size	in	each	device,	as	our	fingers	are	the	same	size,	no	matter	what	device	we
are	using.	To	show	a	possible	solution	for	this,	we	will	create	a	new	Canvas
using	a	different	scaling	technique.

1.	 We	will	first	rename	our	current	Canvas	object	to	Canvas	-	Scale	Screen.	This
way,	we	can	easily	tell	whether	we	are	using	the	correct	canvas	for	this	or
not.

2.	 Now	that	we	have	that	one	ready,	we	can	create	our	new	one.	Go	to	the	top
menu	bar	and	then	select	GameObject	|	UI	|	Canvas.	Rename	this	new
Canvas	to	Canvas	-	Scale	Physical.	Then,	under	the	Canvas	Scaler	component,
change	UI	Scale	Mode	to	Constant	Physical	Size:

Using	this	method,	Unity	will	attempt	to	scale	the	size	of	this	canvas
so	that	each	element	has	the	same	physical	size,	regardless	of	the
resolution.	Since	we're	going	for	buttons	that	we	intend	to	press	with

our	fingers,	this	makes	a	lot	of	sense.

3.	 Now,	with	this	canvas	selected	in	the	Hierarchy	view,	go	to	the	menu	and
select	GameObject	|	UI	|	Button	to	create	a	new	button	inside	of	this	canvas.

At	this	point,	you	will	see	a	new	child	object	to	Canvas	called	Button
and	if	you	were	to	extend	that	object,	you'll	see	that	it	has	a	Text	child
also:

The	next	question	is,	what	size	should	our	buttons	be?	Google
suggests	in	their	Material	guidelines	that	at	least	48	x	48	density-
independent	pixels	should	be	used	(dp	for	short),	whereas	Apple	at
their	Worldwide	Developers	Conference	(WWDC)	recommends	at
least	44	dp	x	44	dp.	Either	way,	that	comes	somewhere	around	8mm
x	8mm	or	0.3	inches	x	0.3	inches.

To	read	the	material	guidelines,	check	out:	https://material.io/guidelines/la
yout/metrics-keylines.html#metrics-keylines-sizing-by-increments.

If	you	were	to	look	at	the	game	right	now	at	our	standard	resolution,
you	may	be	a	bit	scared	due	to	the	size	of	the	button	right	now,
depending	on	the	resolution:

https://material.io/guidelines/layout/metrics-keylines.html#metrics-keylines-sizing-by-increments

That's	because	our	button	size	is	assuming	that	the	dpi	(dots	per
inch)	value	is	96	when	on	devices	such	as	the	OnePlus	3,	and	the
iPhone	6/7/8	Plus	is	around	400,	or	four	times	larger	than	what	it	is
now.	For	right	now,	I'll	change	the	Aspect	Ratio	value	to	16:10
Landscape	to	see	something	closer	to	what	we'll	be	using	on	our
device	when	we	play	there:

If	you're	interested	in	finding	out	what	the	DPI	for	your	device

is,	check	out:	http://dpi.lv/.

4.	 From	the	Hierarchy	tab,	expand	the	Button	object	and	change	the	button's
Text	child's	Text	component's	text	value	to	Play.

5.	 The	size	of	the	button	is	quite	large	for	the	space	available,	so	let's	change
the	Button's	Rect	Transform	component's	Width	to	75:

We	now	have	a	button,	but	it	doesn't	actually	do	anything	yet.	Let's
fix	that	now.

6.	 Let's	create	a	script	to	contain	the	functionality	that	we	want.	From	the
Project	view,	open	up	the	Scripts	folder	and	let's	create	a	new	C#	script
called	MainMenuBehaviour.

	

7.	 Once	your	IDE	has	opened,	use	the	following	code:

using	UnityEngine;

using	UnityEngine.SceneManagement;	//	LoadScene	

public	class	MainMenuBehaviour	:	MonoBehaviour

{

				///	<summary>	

				///	Will	load	a	new	scene	upon	being	called	

http://dpi.lv/

				///	</summary>	

				///	<param	name="levelName">The	name	of	the	level	we	want	

				///	to	go	to</param>	

				public	void	LoadLevel(string	levelName)

				{

								SceneManager.LoadScene(levelName);

				}

}

The	LoadLevel	function	will	load	a	level	based	on	the	name	that	we
provide	to	it	making	use	of	Unity's	Scene	Manager,	which	we	added
using	a	statement	at	the	top	of	our	code	so	that	we	would	have	access
to	that	namespace.

8.	 Save	the	script	and	go	back	to	the	Unity	editor.	To	call	Unity's	UI	Events
from	the	editor,	we	will	need	to	have	a	game	object	with	the	MainMenuBehaviour
component	attached	to	it	to	call	this	function	from.	We	could	use	one	of	the
currently	existing	objects,	but	we'll	just	create	a	new	object,	making	it
easier	to	be	found	in	the	future.

9.	 With	that	in	mind,	create	an	empty	game	object	in	your	scene	called	Main
Menu	and	then	add	the	MainMenuBehaviour	script	to	it.	Then,	drag	and	drop	it	to
the	top	of	the	Hierarchy	tab	to	make	it	easier	to	access	in	the	future	and
reset	its	position	for	the	sake	of	neatness.

	

10.	 Select	your	Play	button,	and	go	to	the	Inspector	tab	and	scroll	down	to	the
Button	component	from	there.	Then,	in	the	On	Click	()	section,	click	on	the
+	icon	to	add	something	for	our	button	to	do.

11.	 Then,	drag	and	drop	the	Main	Menu	object	from	the	Hierarchy	tab	to	the
area	that	currently	says	None	(Object),	which	is	added	to	the	list.

12.	 Click	on	the	dropdown	that	currently	says	No	Function	and	then	select
MainMenuBehaviour.LoadLevel.	Then,	in	the	textbox	that	appears	below,
type	in	the	name	of	our	game's	level,	Gameplay:

13.	 Lastly,	open	the	Build	Settings	like	we	did	before	by	going	to	File	|	Build
Settings	and	add	our	MainMenu	to	the	list	at	index	0	by	selecting	Add
Current,	and	then	dragging	the	MainMenu	level	to	the	top	so	that	it	will	be
the	level	that	starts	off	when	we	start	the	game:

14.	 Save	your	project	and	scene	and	click	on	the	Play	button:

At	this	point,	our	main	menu	is	working	well,	and	we	can	get	into	the	game

without	any	issues	by	clicking	on	the	Play	button:

Adding	a	pause	menu
Now	that	we	have	the	main	menu,	we	will	move	on	next	to	building	something
else	that	most	games	will	need,	a	pause	menu.	In	PC	games,	this	will	likely	be
triggered	by	the	Esc	key,	whereas	in	a	mobile	game,	it	typically	needs	its	very
own	button.	We	will	make	it	so	that	this	project	supports	both.

1.	 To	start	off,	let's	open	up	the	Gameplay	scene	by	going	to	the	Project
window	and	then	opening	the	Assets/Scenes	folder	and	double-clicking	on
Gameplay,	thus	saving	the	MainMenu	level	if	you	didn't	do	so	already:

Before	we	create	a	button	to	open	our	pause	menu,	let's	go	ahead	and
create	the	pause	menu	first	that	we'll	be	opening.

2.	 The	first	thing	we'll	do	is	dim	our	screen	when	we	enter	the	pause	menu.	An
easy	way	to	do	that	is	having	an	image	scale	to	cover	our	entire	screen,
which	is	what	the	Panel	object	does	by	default.	We	can	create	it	by	selecting
Game	Object	|	UI	|	Panel.	Note	that	this	creates	a	Canvas	and	an
EventSystem	object	in	addition	to	the	Panel	because	one	doesn't	exist
already.

3.	 Rename	Panel	to	Pause	Menu.	Then,	we'll	change	the	Color	property	of	the
object's	Image	component	to	black	with	a	higher	transparency	by	increasing
the	alpha	channel	(A)	to	175:

The	Image	component	works	in	a	similar	manner	to	the	Sprite
Renderer	for	2D	games	with	information	on	an	image	to	draw	and	the
color	to	use	for	it.

4.	 The	current	image	has	a	thin	border,	which	I'm	not	a	fan	of,	in	this	case.
You	may	keep	it	if	you'd	like,	but	I'm	going	to	remove	it	and	change	the
Source	Image	to	None	(Sprite)	by	selecting	the	current	one	and	pressing	the
Delete	key:

Now	that	we	have	this,	we	will	need	to	populate	the	menu	with
content.	In	this	case,	we	will	have	a	text	object	saying	that	the	game
is	paused	and	some	buttons	allowing	the	player	to	resume,	restart,	or
return	to	the	main	menu.

5.	 Let's	create	another	panel	to	hold	our	pause	menu	contents.	We	want	this
panel	to	be	a	child	of	our	Pause	Menu	object,	so	we	can	do	this	easily	by
going	to	the	Hierarchy	window,	right-clicking	on	the	Pause	Menu,	and
selecting	UI	|	Panel.

Now,	for	this	panel,	I	don't	want	it	to	take	up	the	entire	screen,	so	I
will	use	another	component	to	modify	its	size	based	on	the	resolution
we	receive.	In	this	case,	I	will	use	an	Aspect	Ratio	Fitter	component.

6.	 From	the	Inspector	window,	scroll	all	the	way	down	and	then	select	Add
Component	and	start	typing	in	Aspect.	From	there,	select	Aspect	Ratio	Fitter
and	then	press	the	Enter	key.

7.	 Afterward,	go	to	our	newly	added	component	and	change	the	Aspect	Mode
to	Fit	in	Parent	to	ensure	that	the	panel	will	always	fit	within	our	screen	and
set	the	Aspect	Ratio	to	0.5.	This	means	that	it	will	be	twice	as	high	as	it	is
wide	(width	over	height,	which	means	½—0.5).

If	you	go	to	the	Game	window	and	switch	aspect	ratios,	you'll
note	that	the	menu	will	stay	in	a	similar	shape.
For	more	information	on	the	Aspect	Ratio	Fitter	component
check	out:
https://docs.unity3d.com/Manual/script-AspectRatioFitter.html.

8.	 This	is	good,	but	I	don't	want	to	have	the	panel	stuck	directly	to	the	edge	of
our	screen,	so	we	will	make	this	object	invisible	by	clicking	on	the
checkmark	by	the	Image	component.

9.	 Then,	right-click	on	the	Panel	object	and	create	another	panel	by	going	to
UI	|	Panel.	Rename	this	new	object	as	Pause	Menu	Contents	and	then
change	the	Rect	Transform	component's	left,	right,	top,	and	bottom	values
to	10	to	give	us	a	border	around	the	screen.

10.	 We	will	use	physical	buttons	like	last	time,	so	let's	move	to	the	Canvas
object,	and	under	the	Canvas	Scaler	component,	change	the	UI	Scale	Mode
to	Constant	Physical	Size:

We	could	place	everything	manually	like	we	did	previously	by	hand,
but	in	this	case,	we	may	want	to	use	another	feature	that	Unity's	UI
System	has:	Layout	Groups.

Layout	Groups	will	make	resize	children	of	an	object	with	that
component	automatically	to	fit	the	area	of	the	parent.	There	are
several	different	layout	groups,	including	grid-based,	horizontal,	and

https://docs.unity3d.com/Manual/script-AspectRatioFitter.html

vertical.	In	our	case,	the	menu	will	probably	be	vertical.

For	more	information	on	Unity's	way	of	automatically	creating
layouts,	check	out:	https://docs.unity3d.com/Manual/UIAutoLayout.html.

11.	 Select	the	Pause	Menu	Contents	object	in	the	Hierarchy	window	and	then
switch	to	the	Inspector	window.	From	there,	scroll	all	the	way	down	to	the
Add	Component	option	and	select	it.	Type	in	Vertical	Layout	Group	and
select	it.

12.	 Let's	create	some	children	to	fit	in	our	menu.	From	the	Hierarchy	window,
right-click	on	the	Pause	Menu	Contents	object	and	select	UI	|	Button.

13.	 This	creates	a	button,	but	you'll	note	that	it	looks	pretty	much	like	a	normal
button.	Let's	open	up	its	child	Text	object	and	change	the	text	to	Resume.

14.	 Afterward,	select	the	Pause	Menu	Contents	object	and	under	the	Inspector
window	go	to	the	Vertical	Layout	Group	(Script)	component	and	change	the
Child	Alignment	to	Middle	Center.	Then,	change	the	Child	Control	Size	to
have	Width	toggled.

15.	 Then,	in	the	Vertical	Layout	Group	component,	click	on	the	arrow	to	the
left	of	the	Padding	property	to	open	it	up	and	then	set	all	of	the	sides	to	5:

This	will	add	5	pixels	of	padding	in	each	direction	within	all	of	the
children	of	the	layout	group.

https://docs.unity3d.com/Manual/UIAutoLayout.html

16.	 Now,	duplicate	this	button	twice	and	change	the	text	to	Restart	and	Main
Menu.

17.	 Next,	right-click	on	the	Panel	object	and	select	UI	|	Text.	Change	the
object's	text	to	Paused	and	change	its	alignment	to	be	centered	and	increase
the	size	until	it's	somewhere	you	like.	Note	how	the	order	in	which	the	child
is	changes	the	order	it	is	displayed.	With	that	in	mind,	drag	the	Text	object
to	the	top:

This	looks	nice,	but	there's	also	a	lot	of	spacing	here,	and	we	can't	see	the
entirety	of	the	Main	Menu	on	this	button.	So,	if	we'd	like,	we	can	instead
condense	the	contents	of	our	menu	to	just	fit	what	we	have	there.

18.	 To	do	this,	we	can	go	to	Hierarchy	and	select	the	Pause	Menu	Contents
object	and	then	add	a	Content	Size	Fitter	component.	Once	it	is	added,	we
will	change	the	Horizontal	Fit	and	Vertical	Fit	to	Preferred	Size.

19.	 This	will	scrunch	all	the	buttons	together,	so	we	can	change	the	Vertical
Layout	Group's	Spacing	property	to	5	and	add	some	space	between	the
buttons.

20.	 Now,	to	make	sure	that	the	buttons	fit	no	matter	what	size	we	have,	select
each	Button	and	add	a	Horizontal	Layout	Group	(Script)	to	them.	From
there,	check	the	Child	Controls	Size	for	Width	and	Height	and	add	a

padding	of	5.	Once	you	create	the	first	Horizontal	Layout	Group	(Script),
you	can	right-click	on	it	and	select	Copy	Component,	then	go	to	the	other
two	buttons,	right-click	on	the	Inspector	tab	at	the	Rect	Transform
component	and	then	select	the	Paste	component:

In	this	case,	the	Child	Controls	Size	property	will	make	it	so	that	the
button	will	increase	its	size	to	ensure	that	it	fits	the	size	of	the	text
provided.

21.	 We	will	also	go	to	the	paused	Text	object	and	increase	the	Text	component's
Font	Size	to	25	to	fill	out	the	area	and	emphasize	that	we	are	in	the	pause
menu:

22.	 Now	that	we	have	the	buttons	themselves,	let's	not	actually	make	them	do
something.	In	the	Project	window,	open	up	the	Scripts	folder	and	create	a
new	C#	Script	called	PauseScreenBehaviour	and	double-click	on	it	to	open	up
the	IDE	of	your	choice.

23.	 Once	it's	opened,	use	the	following	code:

using	UnityEngine;	

using	UnityEngine.SceneManagement;	//	SceneManager	

	

public	class	PauseScreenBehaviour	:	MainMenuBehaviour	

{	

	

				private	static	bool	paused;	

	

				[Tooltip("Reference	to	the	pause	menu	object	to	turn	on/off")]	

				public	GameObject	pauseMenu;	

	

				///	<summary>	

				///	Reloads	our	current	level,	effectively	"restarting"	the					

				///	game	

				///	</summary>	

				public	void	Restart()

				{

								SceneManager.LoadScene(SceneManager.GetActiveScene().name);

				}

	

				///	<summary>	

				///	Will	turn	our	pause	menu	on	or	off	

				///	</summary>	

				///	<param	name="isPaused"></param>	

				public	void	SetPauseMenu(bool	isPaused)	

				{	

								paused	=	isPaused;	

	

								//	If	the	game	is	paused,	timeScale	is	0,	otherwise	1	

								Time.timeScale	=	(paused)	?	0	:	1;	

								pauseMenu.SetActive(paused);	

				}	

	

				void	Start()	

				{	

								paused	=	false;	

				}	

				

}	

In	this	script,	we	will	first	use	a	static	variable,	which	is	called	paused.
When	we	declare	a	variable	static,	we	ensure	that	there	will	only	ever
be	one	of	those	variables	inside	of	this	class,	which	all	instances	will
share.	One	of	the	advantages	of	this	is	that	we	can	access	the	property
in	other	scripts	using	the	class	name	followed	by	a	period	and	then
the	attribute's	name	(in	this	case,	PauseScreenBehaviour.paused).	We	will
use	this	concept	later	on	when	we	want	to	open	the	menu	through
code.

We	then	have	two	public	functions,	which	we	will	call	via	the	UI
elements.	First,	we	have	a	Restart	function,	which	will	use	Unity's
Scene	Manager	to	return	us	to	the	current	level	loaded,	effectively
restarting	the	game.	It	is	important	to	note	that	static	variables	do	not
reset	when	restarting	in	Unity,	so	that's	why	I	set	paused	to	false	in
the	Start	function	to	ensure	that	when	we	come	to	the	level,	it	is
unpaused.

Finally,	I	have	a	SetPauseMenu	function,	which	will	turn	the	pause	menu
on	or	off	based	on	the	value	of	isPaused.	It	also	sets	the	Time.timeScale
property,	where	0	means	that	nothing	will	happen	and	1	means	normal
time.	This	property	will	modify	the	Time.deltaTime	variable,	effectively
canceling	out	movement	that	we	have	as	long	as	we	use	it.

24.	 Save	your	script	and	dive	back	into	Unity.
25.	 Now,	let's	dive	into	the	three	Button	objects	and	rename	them	to	Resume

button,	Restart	button,	and	Main	Menu	button	for	clarity's	sake.
26.	 Then,	we'll	create	a	new	empty	game	object	by	going	to	GameObject	|

Create	Empty.	We'll	name	it	to	Pause	Screen	Behaviour	(Script)	and	then
attach	the	Pause	Screen	Behaviour	component	to	it.	Next,	assign	the	Pause
Menu	variable	to	the	Pause	Menu	game	object	in	the	Hierarchy	tab:

27.	 Now	that	we	have	the	script,	we	can	now	change	the	buttons	to	actually	do
something.	Go	to	the	Inspector	window	with	it	selected	and	go	to	the
Button	component's	On	Click	()	section	and	click	on	the	+	button	to	add	an
action	to	occur.

28.	 Drag	and	drop	the	Pause	Menu	Behaviour	(Script)	object	from	the
Hierarchy	window	into	the	box	on	the	bottom-left	side	of	the	On	Click	()
action	in	the	Inspector	window.	Next,	go	to	the	dropdown	and	select	Pause
Menu	Behaviour	|	SetPauseMenu.	By	default,	it's	on	false	due	to	not	being
checked,	so	this	should	work	for	us:

29.	 Likewise,	do	the	same	for	the	Restart	button	object,	this	time	calling	the
Restart	function.

30.	 Next,	do	the	same	for	the	Menu	Button	object,	except	call	LoadLevel,	and	put	the
name	of	our	main	menu	level	in	the	string	place	(MainMenu,	in	my	case).

31.	 Save	our	game	and	go	ahead	and	run	the	game:

As	you	can	see	in	the	preceding	screenshot,	if	we	restart	the	game,	it	works

correctly--we	can	go	to	the	main	menu	and	Resume	continues	the	game.

Pausing	the	game
	

At	this	point,	we	have	some	issues.	Once	the	menu	is	gone,	there	is	no	way	to
get	it	back,	the	game	should	start	unpaused,	and	the	game	should	actually	pause.
Let's	tackle	these	issues	next:

1.	 Open	up	the	PlayerBehaviour	script	and	replace	the	bottom	of	the	Update
function	with	the	following	(changes	are	highlighted,	note	the	removal	of
the	original	way	of	calling	rb.AddForce):

///	<summary>	

				///	Update	is	called	once	per	frame	

				///	</summary>	

				void	Update	()	{	

								//	If	the	game	is	paused,	don't	do	anything

								if	(PauseScreenBehaviour.paused)

												return;	

	

								//	Movement	in	the	x	axis	

								float	horizontalSpeed	=	0;	

	

								//	Check	if	we	are	running	either	in	the	Unity	editor	//	or	in	a	standalone	

build.	

								#if	UNITY_STANDALONE	||	UNITY_WEBPLAYER	||	UNITY_EDITOR	

	

								//	Check	if	we're	moving	to	the	side	horizontalSpeed	=	

Input.GetAxis("Horizontal")	*		

																														dodgeSpeed;	

	

								//	If	the	mouse	is	held	down	(or	the	screen	is	tapped	//	on	Mobile)	

								if	(Input.GetMouseButton(0))	

								{	

												horizontalSpeed	=	CalculateMovement(Input.mousePosition);	}	

	

								//	Check	if	we	are	running	on	a	mobile	device	#elif	UNITY_IOS	||	UNITY_ANDROID	

	

								//	Move	player	based	on	direction	of	the	accelerometer	horizontalSpeed	=	

Input.acceleration.x	*	dodgeSpeed;	

								//	Check	if	the	screen	has	been	touched	if	(Input.touchCount	>	0)	

								{	

												//	Store	the	first	touch	detected.	

												Touch	touch	=	Input.touches[0];	//horizontalSpeed	=	

CalculateMovement(touch.position);	SwipeTeleport(touch);	

	

												TouchObjects(touch);	

								}	

	

								#endif	

								var	movementForce	=	new	Vector3(horizontalSpeed,	0,	rollSpeed);	

	

								//	Time.deltaTime	is	the	amount	of	time	since	the	//	last	frame	(approx.	1/60	

seconds)	movementForce	*=	(Time.deltaTime	*	60);	

								//	Apply	our	auto-moving	and	movement	forces	rb.AddForce(movementForce);	

			}		

First	of	all,	if	the	game	is	paused,	we	will	not	do	anything	within	the
function.	Also,	instead	of	just	adding	a	force	always,	we	now
multiply	that	value	by	Time.deltaTime,	which	is	how	much	time	has
elapsed	since	the	previous	frame.	This	makes	it	so	that	as	computers
get	better,	our	code	will	work	the	same.

2.	 Now,	the	game,	by	default,	should	be	unpaused,	so	let's	go	ahead	and	select
the	Pause	Menu	object	in	the	Hierarchy	view	and	then	click	on	the	active
button	in	the	Inspector	view	to	disable	it:

3.	 In	addition	to	this,	we	will	need	a	way	to	turn	it	on.	On	PC	games,	this	is
usually	the	Esc	button,	but,	for	mobile,	we	will	instead	have	a	button	that
players	can	click	to	turn	on	the	menu.	Go	ahead	and	right-click	on	the
Canvas	object	in	the	Hierarchy	view	and	select	UI	|	Button.

4.	 Rename	the	new	object	as	Show	Pause	Button	and	use	the	Anchor	Presets
option	to	place	the	object	on	the	bottom	left	of	the	screen	(use	Alt	+	Shift	to
set	Pivot	and	Position	as	well).	Then,	change	the	Width	to	30,	as	it	won't
need	to	be	that	large.

5.	 Open	up	the	Text	and	change	the	Text	component's	Text	property	to	|	|	to
make	it	look	like	a	pause	button.

6.	 Go	back	to	the	Show	Pause	Button	object	and	create	an	On	Click	()	event
using	the	SetPauseMenu	function	on	the	Pause	Menu	Behaviour	object.
Then,	click	on	the	checkbox	to	set	it	to	pause.

7.	 Now,	we	want	to	remove	this	pause	button	when	we	click.	We	could	do	this
through	code,	but	just	to	show	that	we	can	also	do	this	via	the	editor,	go
ahead	and	click	on	the	+	again	to	add	another	action	on	On	Click	().	Next,
drag	and	drop	the	actual	Show	Pause	Button	and	then	call	the	GameObject	|
SetActive	function.	Then,	uncheck	it	to	turn	the	object	off:

>

8.	 Go	back	to	the	Resume	Button	and	add	another	event	to	its	button	to	turn
the	Show	Pause	Menu	button	back	on	when	we	leave	using	SetActive	like
we	used	in	the	previous	step.

As	mentioned	previously,	one	problem	that	won't	be	apparent	now
unless	you	restart	the	level	is	the	fact	that	static	variables	will	keep
their	values	each	time	we	reload	the	game.	In	our	case,	we	set	paused,
which	turns	our	Time.timeScale	to	0.	Thankfully,	we	can	fix	this	fairly
easily.

9.	 Lastly,	open	up	the	PauseMenuBehaviour	and	update	the	Start	function	to	have
the	following:

void	Start()	

				{	

								paused	=	false;	

								SetPauseMenu(false);	

				}	

10.	 Save	your	script	and	the	scene,	and	then	play	the	game:

The	Pause	menu	now	works	correctly.

	

	

	

Summary
	

With	that,	we've	gotten	a	good	foundation	to	build	on	when	creating	UI	elements
for	a	mobile	game.	We	first	covered	how	to	create	a	title	screen	making	use	of
Buttons	and	Text	objects.	We	then	covered	how	to	use	Panels	and	Panels,
Button,	Text,	and	Layout	Groups	to	make	your	menus	adapt	to	the	size	of	your
elements.	We	also	touched	on	Layout	Groups	and	how	they	can	arrange	our
objects	to	fit	in	a	pleasing	manner.	Finally,	we	integrated	the	pause	menu	into
our	game	itself	and	made	it	work	with	everything	in	our	project.	We	will	be
revisiting	these	concepts	in	later	chapters,	so	keep	these	explanations	in	mind.

In	the	next	chapter,	we	will	dive	into	monetization	and	take	a	look	at	just	how
we	can	add	Unity	Ads	to	our	project.

	

	

	

Advertising	Using	Unity	Ads
When	working	on	mobile	titles,	one	needs	to	think	about	how	they	are	going	to
sell	their	game.	Deciding	on	how	to	best	sell	a	game	can	be	difficult.	Of	course,
you	can	sell	your	game	for	a	price,	and	there	is	a	possibility	that	it	will	be
successful,	but	you'll	be	limiting	your	audience	numbers	to	a	much	lower
amount.	This	could	work	well	for	a	niche	game,	but	if	you're	trying	to	make	a
game	with	a	broad	appeal	where	you	want	to	get	as	many	players	as	possible	to
play	your	title,	you	may	have	some	issues.

Having	a	price	on	the	game	can	be	a	major	hurdle	in	getting	those	initial
customers	who	can	share	the	game	via	word	of	mouth	and	contribute	to	having
more	people	play	your	game.	To	solve	this	potential	issue,	you	do	have	the
option	of	making	your	game	free.	Afterward,	you	can	give	players	the
opportunity	to	purchase	things	or	show	advertisements	when	playing	the	project.

That's	not	to	say	that	having	a	bunch	of	advertisements	in	a	free	game	is	the	best
option	either.	Having	too	many	ads,	or	even	the	wrong	kind	of	ads,	can	drive
users	away,	which	can	be	even	worse.	Many	developers	each	have	their	own
opinions	on	whether	it's	a	good	idea	to	use	ads	or	not,	but	that's	not	the	purpose
of	this	chapter.	In	this	chapter,	we	will	look	into	different	options	available	to	us
for	advertising	over	the	course	of	our	game	and	show	how	to	implement	them,
should	you	choose	to	add	the	content	to	your	game.

Chapter	overview
In	this	chapter,	we	will	integrate	Unity's	Ad	framework	into	our	project	and	learn
how	to	create	both	simple	and	complex	versions	of	advertisements.

Your	objectives
	

This	chapter	will	be	split	into	a	number	of	topics.	It	will	contain	a	simple	step-
by-step	process,	from	beginning	to	end.	The	following	is	the	outline	of	our	tasks:

Unity	Ads	setup
Creating	a	simple	ad
Adding	in	ad	callback	options
Opt-in	advertisements	with	rewards
Integrating	a	cooldown	timer

	

	

Unity	Ads	setup
Unity	Ads	is	a	video	ad	network	for	iOS	and	Android	that	can	monetize	your
existing	player	base	by	showing	ads.	Unity	Ads	offers	video	ads	that	can	be
shown	as	either	rewarded	or	non-rewarded	placements.	Before	we	can	enable
Unity	Ads,	we	must	first	enable	Unity's	Services	suite;	so,	let's	do	that	first.	To
activate	Unity	Services,	you	have	to	link	your	project	to	a	Unity	Service	Project
ID,	which	is	how	Unity	can	tell	the	difference	between	the	different	projects	you
are	creating.

1.	 Open	the	Services	window	by	going	to	Window	|	Services	or	by	clicking	on
the	button	that	has	a	cloud	on	it	in	the	toolbar	on	the	right-hand	side.	If	you
are	working	offline,	you	may	be	asked	to	sign	in.	When	you	do	so,	you
should	see	something	similar	to	the	following:

2.	 Assuming	that	you	haven't	worked	with	Unity	Services	before,	you	will
need	to	create	an	Organization	and	Project	Name.	Click	on	the	dropdown
and	select	your	username	and	then	click	on	the	Create	button.

The	project	name	is	automatically	created	according	to	the	name	of
your	project	when	you	first	created,	but	you	can	change	this	in	the

Settings	section	of	the	Services	window.

Unity	automatically	creates	an	organization	using	your	account
username;	however,	if	you	need	to	make	another	one,	you	can	do	so
at	https://id.unity.com/organizations.

This	should	open	up	the	Services	window	which	contains	a	number	of	sections
that	we	will	be	using	over	the	course	of	this	book.

3.	 At	the	top	of	the	menu	that	pops	up,	you'll	see	a	button	called	Ads.	Go
ahead	and	click	on	it	to	enter	the	menu.	From	there,	click	on	the	toggle	on
the	top-right	corner	to	turn	Ads	on.	You'll	then	be	asked	questions	about
your	game.	If	your	game	is	not	directed	to	children,	go	ahead	and	click	on
the	Continue	button,	otherwise	click	on	the	check	and	then	click	on
Continue.

When	you	indicate	whether	your	game	is	designed	for	children
under	the	age	of	13	years,	ads	will	not	be	behaviorally	targeted	to
users	in	your	game.	Behavioral	targeting	can	yield	higher	effective
cost	per	thousand	impressions	(eCPMs)	by	showing	ads	that	are
more	relevant	to	your	users,	but	its	use	is	prohibited	with	users
under	the	age	of	13	due	to	Children's	Online	Privacy	Protection
Rule	Act	(COPPA)	regulations.	For	more	info	on	this,	check	out	htt
ps://forum.unity.com/threads/age-designation.326930/.

4.	 Ads	should	be	toggled	on	at	this	point.	Then,	click	on	the	checkbox	for

https://id.unity.com/organizations
https://forum.unity.com/threads/age-designation.326930/

Enable	test	mode.	This	will	ensure	that	ads	displayed	are	just	for	testing:

It	is	against	Unity	Ad's	terms	of	service	to	distribute	live	ads	to
beta	testers.	If	they	are	to	click	on	or	install	any	of	the	advertised
games,	their	activity	will	be	monetized	and	the	automated	fraud
system	would	flag	the	game	for	fraud	and	disable	it.	That's	why	we
keep	Test	mode	enabled	until	the	game	is	ready	to	launch.

At	this	point,	we	have	finished	setup	and	can	proceed	to	actually	adding	ads	to
our	project.

Displaying	a	simple	Ad
As	mentioned	previously,	Unity	Ads	has	two	different	types	of	ads	that	we	can
display:	simple	and	rewarded.	Simple	ads	are	easy	to	use,	hence	the	name,	and
allow	users	to	have	simple	full-screen	interstitial	ads.	This	can	be	really	useful
for	moving	between	levels	or	perhaps	for	when	the	player	wants	to	restart	the
game.	Let's	see	how	we	can	implement	that	feature	now.

1.	 To	get	started,	it	would	be	a	good	idea	for	us	to	have	all	of	the	Ad-related
behavior	to	share	a	script,	so	we	will	create	a	new	class	called
UnityAdController	by	going	to	the	Project	window,	opening	the	Assets/Scripts
folder,	and	selecting	Create	|	C#	Script.

2.	 Open	up	the	file	in	the	IDE	of	your	choice,	and	use	the	following	code:

using	UnityEngine;

#if	UNITY_ADS	//	Can	only	compile	ad	code	on	supported	platforms	

using	UnityEngine.Advertisements;	//	Advertisement	class

#endif

public	class	UnityAdController	:	MonoBehaviour

{

				public	static	void	ShowAd()

				{

								#if	UNITY_ADS

								if	(Advertisement.IsReady())

								{

												Advertisement.Show();

								}

								#endif

				}

}

The	preceding	code	does	a	number	of	things.	We	first	state	that	we
are	using	the	UnityEngine.Advertisments	namespace	to	get	access	to	the
Advertisement	class.

We've	also	created	a	static	method	called	ShowAd.	We	made	this	static
so	that	we	can	access	the	function	without	actually	having	to	create

an	instance	of	this	class	in	order	to	call	this	function.	We	then	check
whether	an	advertisement	is	ready,	and	if	it	is,	we	will	then	call	the
Show()	function	to	display	it	on	the	screen.

Note	that	in	all	of	the	code	where	we	make	use	of	the	Advertisement
class,	I've	added	in	a	#if	statement	and	closed	it	with	a	#endif.	This	is	a
directive	that	will	only	compile	if	the	defined	symbol	is	defined.
Basically,	this	code	will	only	be	compiled	if	Unity	supports	ads	on	it,
so	our	project	will	still	compile	for	both	PC	and	mobile	devices.

For	more	information	on	#if,	endif,	and	other	conditional	directives,
check	out	https://msdn.microsoft.com/en-us/library/ew2hz0yd.aspx.

3.	 Save	your	script	and	then	open	up	the	MainMenuBehaviour	file	and	add	the
following	highlighted	code:

using	UnityEngine;	

using	UnityEngine.SceneManagement;	//	LoadScene	

	

public	class	MainMenuBehaviour	:	MonoBehaviour	

{	

				///	<summary>	

				///	Will	load	a	new	scene	upon	being	called	

				///	</summary>	

				///	<param	name="levelName">The	name	of	the	level	we	want	

				///	to	go	to</param>	

				public	void	LoadLevel(string	levelName)

				{

								SceneManager.LoadScene(levelName);

#if	UNITY_ADS

								if	(UnityAdController.showAds)

								{

												//	Show	an	ad	

												UnityAdController.ShowAd();

								}

#endif

				}

}

This	will	have	an	advertisement	play	each	time	we	call	the	LoadLevel
function,	if	it	is	supported.	We	also	added	in	a	new	parameter	with	a
default	value.	The	nice	thing	about	this	is	that	we	can	optionally
decide	when	we	want	to	show	an	ad.	For	instance,	we	may	want	to
make	it	so	that	when	we	restart	the	game	we	don't	play	an	ad.

https://msdn.microsoft.com/en-us/library/ew2hz0yd.aspx

4.	 Now	let's	see	this	in	action.	Play	the	game,	pause	the	game,	and	click	on	the
Main	Menu	button:

As	you	can	note	in	the	preceding	screenshot,	the	ad	works	correctly.	This	screen
is	what	is	shown	when	playing	the	game	in	the	editor.	It	has	buttons	to	allow	us
to	test	whether	a	player	skips	or	watches	a	video	in	full.	When	we	disable	Test
mode,	we	will	then	see	live	video	ads.

If	this	does	not	work	and/or	show	up,	check	the	Player	Settings
menu	you	learned	about	previously	and	ensure	that	your	current
platform	is	set	to	Android	or	iOS.

Utilizing	ad	callback	options
The	code	we	wrote	for	the	LoadLevel	function	works	perfectly	fine	when	we	go	to
the	main	menu	of	the	game;	however,	if	we	dive	into	the	game	itself	from	the
main	menu,	the	game	will	still	be	going	on	in	the	background	with	the	ad
blocking	the	player	from	playing	the	game.

When	running	your	app	on	an	actual	mobile	device,	the	Unity	Player	will	pause
while	Unity	Ads	are	shown.	However,	if	you	are	testing	in	the	Unity	Editor,	the
game	is	not	paused	while	the	placeholder	ads	are	shown.	However,	we	can
simulate	that	behavior	ourselves	using	the	Advertisement.ShowOptions	class.

We	will	pause	the	game	when	an	ad	is	shown	and	then	resume	once	the	ad	is
finished.	To	do	so,	perform	the	following	steps:

1.	 Let's	first	open	up	the	UnityAdController	class	and	update	it	to	the	following:

using	UnityEngine;

#if	UNITY_ADS	//	Can	only	compile	ad	code	on	support	platforms	

using	UnityEngine.Advertisements;	//	Advertisement	

#endif

public	class	UnityAdController	:	MonoBehaviour

{

				public	static	void	ShowAd()

				{

								#if	UNITY_ADS

								//	Set	options	for	our	advertisement	

								ShowOptions	options	=	new	ShowOptions();

								options.resultCallback	=	Unpause;

								if	(Advertisement.IsReady())

								{

												Advertisement.Show(options);

								}

								//	Pause	game	while	ad	is	shown	

								PauseScreenBehaviour.paused	=	true;

								Time.timeScale	=	0f;

								#endif

				}

				#if	UNITY_ADS

				public	static	void	Unpause(ShowResult	result)

				{

								//	Unpause	when	ad	is	over	

								PauseScreenBehaviour.paused	=	false;

								Time.timeScale	=	1f;

				}

				#endif

}

The	preceding	code	shows	us	the	ShowOptions	class	for	the	first	time.
This	class	contains	options	that	can	be	passed	to	Advertisements.Show	to
modify	the	behavior	of	the	advertisement	we	want	to	play,	the	most
important	being	resultCallback.	This	basically	says	that	whenever	we
close,	skip,	or	fail	playing	the	advertisement,	we	want	to	call	the
Unpause	function.	Now,	we	will	be	diving	into	more	detail	on	this
function	in	a	later	section,	but	in	the	meantime,	we	can	make	use	of
this	to	resume	the	game.

For	more	information	on	the	ShowOptions	class,	check	out	https://docs.uni
ty3d.com/ScriptReference/Advertisements.ShowOptions.html.

2.	 To	start	off,	we	will	make	it	so	that	the	PauseMenuBehaviour	doesn't	override	this
new	change.	So,	we	will	replace	the	Start()	function	with	the	following:

void	Start()

				{

								paused	=	false;

								#if	!UNITY_ADS	//	If	not	using	ads,	just	start	the	game

								SetPauseMenu(false);

								#endif

				}

Performing	the	preceding	snippet	is	important	because	otherwise	the
game	will	immediately	be	turned	off	when	the	level	loads	in	the	Start
function	after	we	tell	the	game	to	pause,	which	is	called	after	the
level	loads.	This	is	needed	for	the	PC	version	of	the	game,	as	there	is
nothing	else	for	unpausing	the	static	value.

3.	 Save	our	scripts	and	start	the	game	up	again:

https://docs.unity3d.com/ScriptReference/Advertisements.ShowOptions.html

With	that,	when	we	transition	from	the	main	menu	to	the	game,	we	will	pause
the	game	until	we	are	ready	to	jump	in.

Opt-in	advertisements	with	rewards
According	to	AdColony,	the	most	recommended	form	of	mobile	game	ads	from
58%	of	mobile	developers	is	the	rewarded	video	ad.	By	that,	we're	referring	to
making	ads	an	opt-in	experience	where	players	choose	to	see	an	ad	and	they
receive	some	kind	of	bonus	in	return.	That	way,	users	feel	it's	a	choice	for	them
to	see	the	ad	and	they	feel	compelled	to	see	it	because	they	will	get	something
out	of	it.

Rewarded	ad	placements	typically	yield	higher	effective	Cost	Per	1000
Impressions	(eCPMs)	since	they	offer	more	engagement	from	users	by	allowing
them	to	opt-in	before	watching	an	ad	in	exchange	for	some	in-game	reward.	In
our	game,	we	could	add	the	choice	of	restarting	the	game	or	seeing	an	ad	to
continue	the	game.

If	you're	interested	in	learning	more	about	why	reward	ads	are
recommended,	check	out	https://www.adcolony.com/blog/2016/04/26/the-top-ads-
recommended-by-mobile-game-developers/.

1.	 So,	let's	create	a	Game	Over	menu	by	first	going	to	the	Hierarchy	tab	and
expending	the	Canvas	if	not	done	so	already.	Then,	select	the	Pause	Menu
object	and	duplicate	it	by	pressing	Ctrl	+	D.	Rename	this	new	object	Game
Over	and	then	toggle	it	on	so	that	we	can	see	it.	To	make	it	easier	to	see,
feel	free	to	toggle	the	2D	mode	we	used	previously	when	creating	the	UI
elements	of	our	game.

2.	 Next,	expand	the	Game	Over	object	and	the	Panel	child,	then	change	the	Pause
Menu	Contents	object's	name	to	Game	Over	Contents	and	change	the	child	Text
object's	Text	component	to	say	Game	Over	instead.

3.	 Now,	change	the	Resume	button	to	say	Continue	(Play	Ad)	and	change	the
button	object's	name	to	Continue	Button:

https://www.adcolony.com/blog/2016/04/26/the-top-ads-recommended-by-mobile-game-developers/

4.	 We'll	first	need	to	update	the	ObstacleBehaviour	script	to	handle	it;	add	the
following	highlighted	code:

using	UnityEngine;

using	UnityEngine.SceneManagement;	//	LoadScene	

using	UnityEngine.UI;	//	Button

public	class	ObstacleBehaviour	:	MonoBehaviour

{

				[Tooltip("How	long	to	wait	before	restarting	the	game")]

				public	float	waitTime	=	2.0f;

				void	OnCollisionEnter(Collision	collision)

				{

								//	First	check	if	we	collided	with	the	player	

								if	(collision.gameObject.GetComponent<PlayerBehaviour>())

								{

												//	Destroy	(Hide)	the	player

												collision.gameObject.SetActive(false);

												player	=	collision.gameObject;

												//	Call	the	function	ResetGame	after	waitTime

												//	has	passed

												Invoke("ResetGame",	waitTime);	

								}

				}

				///	<summary>	

				///	Will	restart	the	currently	loaded	level	

				///	</summary>	

				void	ResetGame()

				{

								//Bring	up	restart	menu

								var	go	=	GetGameOverMenu();

								go.SetActive(true);

								//	Get	our	continue	button

								var	buttons	=	go.transform.GetComponentsInChildren<Button>();

								UnityEngine.UI.Button	continueButton	=	null;

								foreach	(var	button	in	buttons)

								{

												if	(button.gameObject.name	==	"Continue	Button")

												{

																continueButton	=	button;

																break;

												}

								}

								if	(continueButton)

								{

												#if	UNITY_ADS

												//	If	player	clicks	on	button	we	want	to	play	ad	and

												//	then	continue

																		

				continueButton.onClick.AddListener(UnityAdController.ShowRewardAd);

												UnityAdController.obstacle	=	this;

												#else

												//	If	can't	play	an	ad,	no	need	for	continue	button

												continueButton.gameObject.SetActive(false);

												#endif

								}

				}

				private	GameObject	player;

				///	<summary>

				///	Handles	resetting	the	game	if	needed

				///	</summary>

				public	void	Continue()

				{

								var	go	=	GetGameOverMenu();

								go.SetActive(false);

								player.SetActive(true);

								//	Explode	this	as	well	(So	if	we	respawn	player	can	continue)

								PlayerTouch();	

				}

				///	<summary>

				///	Retrieves	the	Game	Over	menu	game	object

				///	</summary>

				///	<returns>The	Game	Over	menu	object</returns>

				GameObject	GetGameOverMenu()

				{

								return	GameObject.Find("Canvas").transform.Find("Game			

								Over").gameObject;

				}

				public	GameObject	explosion;

				///	<summary>	

				///	If	the	object	is	tapped,	we	spawn	an	explosion	and	

				///	destroy	this	object	

				///	</summary>	

				void	PlayerTouch()

				{

								if	(explosion	!=	null)

								{

												var	particles	=	Instantiate(explosion,	transform.position,

												Quaternion.identity);

												Destroy(particles,	1.0f);

								}

								Destroy(this.gameObject);

				}

}

In	this	instance,	we	are	removing	the	destruction	of	our	player	and
are	instead	hiding	them	so	that	we	can	re-enable	it	later	if	we	would
like	to.	We	also	destroy	what	the	player	hit.	So,	if	we	do	restart	the
game,	then	the	player	will	be	able	to	start	off	from	right	where	he
initially	began.	With	that	in	mind,	we	also	created	a	Continue	function
that	will	set	up	the	game	to	be	continued	if	we	need	to	do	so.

5.	 Open	up	the	UnityAdController	script	and	update	it	by	adding	the	following
functions:

public	static	void	ShowRewardAd()

				{

								#if	UNITY_ADS

								if	(Advertisement.IsReady())

								{

												//	Pause	game	while	ad	is	shown	

												PauseScreenBehaviour.paused	=	true;

												Time.timeScale	=	0f;

												var	options	=	new	ShowOptions	{	resultCallback	=		

												HandleShowResult	};

												Advertisement.Show(options);

								}

								#endif

				}

				//	For	holding	the	obstacle	for	continuing	the	game	

				public	static	ObstacleBehaviour	obstacle;

				private	static	void	HandleShowResult(ShowResult	result)

				{

								#if	UNITY_ADS

								switch	(result)

								{

												case	ShowResult.Finished:

																//	Successfully	shown,	can	continue	game	

																obstacle.Continue();

																break;

												case	ShowResult.Skipped:

																Debug.Log("Ad	skipped,	do	nothing");

																break;

												case	ShowResult.Failed:

																Debug.LogError("Ad	failed	to	show,	do	nothing");

																break;

								}

								#endif

								//	Unpause	when	ad	is	over	or	when	called

								PauseScreenBehaviour.paused	=	false;

								Time.timeScale	=	1f;

				}

6.	 Save	your	scripts.
7.	 Click	on	the	Game	Over	object	and	disable	it,	save	our	scene,	and	then	dive

into	the	game.

At	this	point,	when	we	die	in	the	game,	we'll	be	given	a	Game	Over	screen:

If	we	click	on	Continue	(Play	Ad),	we	will	have	an	ad	play.	If	the	player	skips	it,
nothing	will	happen,	but	if	they	watch	all	the	way	through	it	should	bring	us
back	into	the	game	as	if	nothing	happened:

With	that,	our	ad	system	is	working	correctly.

Adding	in	a	cooldown
Ads	are	great	for	developers;	however,	according	to	Unity's	Monetization	FAQs,
each	user	is	only	able	to	view	25	ads	per	day.	With	that	in	mind,	we	will	likely
want	to	make	it	so	that	players	can	only	trigger	ads	every	once	in	a	while.	This
also	has	the	benefit	of	making	players	want	to	come	back	to	our	game	after	a
period	of	time.

For	more	information	on	Unity's	Monetization	FAQs,	check	out	https
://unityads.unity3d.com/help/faq/monetization.

We	will	now	program	it	so	that	our	Continue	option	will	only	work	once	in
awhile,	perhaps	with	a	short	delay	that	we	can	easily	customize	if	we'd	like:

1.	 To	get	started,	let's	dive	into	our	UnityAdController	script.	We	need	to	add	a
new	variable	to	it,	as	you	can	see	in	the	following	highlighted	code:

using	System;	//	DateTime

using	UnityEngine;

#if	UNITY_ADS	//	Can	only	compile	ad	code	on	support	platforms	

using	UnityEngine.Advertisements;	//	Advertisement	

#endif

public	class	UnityAdController	:	MonoBehaviour

{

				//	Nullable	type	

				public	static	DateTime?	nextRewardTime	=	null;

				public	static	void	ShowAd()

				{

								//	Rest	of	function	below....

The	nextRewardTime	variable	is	of	the	DateTime	type,	which	we	haven't
talked	about	previously.	Basically,	it's	a	structure	that	represents	a
point	in	time	where	we	can	compare	it	to	other	times	and	it's	built
into	the	.NET	framework.	We'll	use	this	to	store	the	time	(if	any)	that
needs	to	pass	before	the	player	is	able	to	play	another	ad.	Note	that
DateTime	is	part	of	the	System	namespace.	That	is	why	we	added	the

https://unityads.unity3d.com/help/faq/monetization

using	System;	line	in	the	preceding	code	as	well.

For	more	information	on	the	DateTime	class	check	out:	https://msdn.micro
soft.com/en-us/library/system.datetime(v=vs.110).aspx.

You	may	notice	the	?	next	to	the	type	of	this	variable.	When	we	do
this,	we	create	what's	called	a	nullable	type.	The	advantage	of	using
them	is	that	they	can	be	null	in	addition	to	having	normal	values.	We
do	this	so	that	we	don't	have	to	fill	in	a	default	value	just	for	the	sake
of	having	one.

For	more	information	on	nullable	types,	check	out	https://www.tutorialsp
oint.com/csharp/csharp_nullables.htm.

2.	 We	also	need	to	update	the	ShowRewardAd()	function	as	follows:

public	static	void	ShowRewardAd()	

{	

				#if	UNITY_ADS	

	

				nextRewardTime	=	DateTime.Now.AddSeconds(15);	

	

				if	(Advertisement.IsReady())	

				{	

								//	Pause	game	while	ad	is	shown	

								PauseMenuBehaviour.paused	=	true;	

								Time.timeScale	=	0f;	

	

								var	options	=	new	ShowOptions	{	resultCallback	=			

								HandleShowResult	};	

								Advertisement.Show(options);	

				}	

	

				#endif	

}	

Now	when	we	show	a	reward	ad,	we	set	nextRewardTime	to	15	seconds
from	when	the	function	is	called.	Of	course,	we	can	just	as	easily	set
this	to	minutes	or	hours	using	the	AddMinutes	and	AddHours	functions.

3.	 Save	your	script	and	then	open	up	the	ObstacleBehaviour	script.	To	start	off
with,	we'll	use	two	new	types,	so	we	will	need	to	add	the	following	new
using	statements	to	our	script:

using	System;	//	DateTime

https://msdn.microsoft.com/en-us/library/system.datetime(v=vs.110).aspx
https://www.tutorialspoint.com/csharp/csharp_nullables.htm

using	System.Collections;	//	IEnumerator

4.	 Afterward,	we	will	need	to	modify	the	bottom	part	of	the	RestartGame()
function	to	have	the	following	bolded	changes:

//	Rest	of	RestartGame	above...

								if	(continueButton)

								{

												#if	UNITY_ADS

												//	If	player	clicks	on	button	we	want	to	play	ad	and

												//	then	continue

												StartCoroutine(ShowContinue(continueButton));

												#else

												//	If	can't	play	an	ad,	no	need	for	continue	button

												continueButton.gameObject.SetActive(false);

												#endif

								}

}

Now,	instead	of	just	adding	a	listener	to	this	button,	we	have	replaced
it	with	calling	a	StartCoroutine	function,	which	takes	in	a	function	that
we	haven't	written	yet,	but	will	get	to	in	a	second.	I	think	it's	probably
a	good	idea	to	talk	a	little	bit	about	coroutines	first.

A	coroutine	is	like	a	function	that	has	the	ability	to	pause	execution
and	continue	where	it	left	off	after	a	period	of	time.	By	default,	a
coroutine	is	resumed	on	the	frame	after	we	start	to	yield,	but	it	is	also
possible	to	introduce	a	time	delay	using	the	WaitForSeconds	function	for
how	long	you	want	to	wait	before	it's	called	again.

5.	 In	there,	use	the	following	script	for	the	ShowContinue	function:

public	IEnumerator	ShowContinue(UnityEngine.UI.Button	contButton)	

{	

				while	(true)	

				{	

								var	btnText	=	contButton.GetComponentInChildren<Text>();	

	

								//	Check	if	we	haven't	reached	the	next	reward	time	yet		

								//	(if	one	exists)	

								if	(UnityAdController.nextRewardTime.HasValue	&&		

												(DateTime.Now	<		

																UnityAdController.nextRewardTime.Value))	

								{	

												//	Unable	to	click	on	the	button	

												contButton.interactable	=	false;	

	

												//	Get	the	time	remaining	until	we	get	to	the	next		

												//	reward	time	

												TimeSpan	remaining	=	UnityAdController.nextRewardTime.Value	

																												-	DateTime.Now;	

	

												//	Get	the	time	left	in	the	following	format	99:99	

												var	countdownText	=	string.Format("{0:D2}:{1:D2}",		

																																remaining.Minutes,		

																																remaining.Seconds);	

	

												//	Set	our	button's	text	to	reflect	the	new	time	

												btnText.text	=	countdownText;	

	

												//	Come	back	after	1	second	and	check	again	

												yield	return	new	WaitForSeconds(1f);	

								}	

								else	

								{	

												//	It's	valid	to	click	the	button	now	

												contButton.interactable	=	true;	

	

												//	If	player	clicks	on	button	we	want	to	play	ad	and		

												//	then	continue	

								contButton.onClick.AddListener(UnityAdController.ShowRewardAd);	

												UnityAdController.obstacle	=	this;	

	

												//	Change	text	to	its	original	version	

												btnText.text	=	"Continue	(Play	Ad)";	

	

												//	We	can	now	leave	the	coroutine	

												break;	

								}	

				}	

									

}	

This	coroutine	will	do	a	number	of	things,	starting	off	by	entering	a
while	(true)	loop.	Now,	usually,	this	is	a	very	bad	thing,	as	it	would
cause	an	infinite	loop,	but	we	break	out	of	the	loop	if	we	have	no
reward	time	set	or	if	we've	passed	the	time	set	in	the	nextRewardTime
variable.	If	not,	we	will	figure	out	how	much	time	is	left	before	that
time	has	passed	and	will	change	the	button's	text	to	display	it.	We
then	use	the	WaitForSeconds	function	to	pause	execution	and	come	back
after	1	second	has	passed.

If	you're	interested	in	learning	more	about	the	behind	the	scenes
aspects	of	how	coroutines	work,	Cyrill	Nadezhdin	has	written	a
neat	article	on	it	at	http://blog.nadezhdin.org//articles/Unity-coroutines-
demystified.

6.	 Save	all	of	our	scripts	and	dive	back	into	Unity	and	play	the	game:

http://blog.nadezhdin.org//articles/Unity-coroutines-demystified

Upon	restarting	the	game	once,	you'll	see	that	if	we	try	to	do	so	again	we	are
brought	to	a	delay	screen.	After	the	time	gets	down	to	0,	the	player	will	then	be
able	to	continue	once	again.

Summary
	

With	that,	we've	gotten	a	good	foundation	on	how	to	add	ads	to	our	game.
Hopefully,	you	can	see	how	easy	it	is	to	implement	and	can	think	of	new	ways	to
engage	players	to	have	the	best	experience	possible.	Over	the	course	of	this
chapter,	we	discovered	how	to	set	up	Unity	Ads.	We	then	saw	how	we	could
create	simple	ads	and	then	learned	how	to	react	to	the	player's	actions	with	ad
callback	options.	Afterward,	we	saw	how	we	could	add	in	rewards	for	players
using	opt-in	advertisements	to	the	game	and	added	a	cooldown	to	the	system	to
make	the	game	less	annoying	for	players.

While	this	is	a	valid	way	to	monetize	our	games,	we	will	dive	into	the	other	most
popular	form	of	in-game	monetization	in	the	next	chapter:	in	app	purchases.

	

	

	

Implementing	In-App	Purchases
As	mentioned	in	the	preceding	chapter,	there	are	many	options	out	there	when	it
comes	to	selling	your	game	on	a	mobile	platform.	If	you	decide	to	go	free-to-
play,	in	addition	to	showing	ads,	there	is	also	the	ability	to	sell	people	additional
content	and/or	advantages	through	the	use	of	selling	in-app	purchases.	This	can
be	a	way	to	engage	users	of	your	game	to	convert	themselves	from	a	free	player
to	a	paid	one.

Typically,	these	can	be	options	such	as	removing	ads	or	offering	themes	to
players,	but	you	can	also	do	things	such	as	unlock	new	levels	and	add	additional
content	that	people	addicted	to	your	game	will	be	clamoring	to	give	you	more	of
their	time.	Alternatively,	you	can	also	think	of	your	IAPs	as	items	that	players
will	want	to	buy	in	order	to	enhance	their	gameplay	experience,	such	as	power-
ups	and	upgrades.

For	more	tips	and	tricks	on	improving	your	freemium	strategy,	I
suggest	that	you	check	out	an	article	by	Pepe	Agell	at	https://www.chart
boost.com/blog/2015/04/inapp-purchases-for-indie-mobile-games-freemium-strategy/.

https://www.chartboost.com/blog/2015/04/inapp-purchases-for-indie-mobile-games-freemium-strategy/

Chapter	overview
In	this	chapter,	we	will	integrate	Unity's	In-App	Purchase	(IAP)	system	into
our	project	and	take	a	look	at	how	to	create	an	IAP	that	is	for	consumable
content	as	well	as	permanent	unlocks.

Your	objectives
	

This	chapter	will	be	split	into	a	number	of	topics.	It	will	contain	a	simple	step-
by-step	process	from	beginning	to	end.	The	following	is	the	outline	of	our	tasks:

Setting	up	Unity	IAP
Creating	a	first	purchase
Adding	button	to	restore	purchases
Configuring	purchases	for	the	stores	of	your	choice

	

	

Setting	up	Unity	IAP
Unity	IAP	is	a	service	that	allows	us	to	sell	a	variety	of	different	items	to	players
within	our	game	projects	and	is	currently	supported	by	the	iOS	App	Store,	Mac
App	Store,	Google	Play,	Windows	Store,	Amazon	Appstore,	and	more,	by
default.	So,	using	this,	we	can	easily	sell	our	items	in	many	different	places.	We
have	already	set	up	Unity	Services	in	the	preceding	chapter,	so	this	will	be	a	lot
easier	to	get	going.	Perform	the	following	steps	to	add	Unity	IAP:

1.	 Open	the	Services	window	by	going	to	Window	|	Services	or	by	clicking	on
the	Cloud	button	in	the	toolbar.	Assuming	that	you	are	following	along
from	the	preceding	chapter,	we	should	already	have	services	set	up.	If	not,
check	out	the	Unity	Ads	Setup	section	in	Chapter	5,	Advertising	using	Unity
Ads,	for	an	explanation	on	how	to	do	so.

2.	 From	the	Services	menu,	scroll	down	to	the	In-App	Purchasing	item.	You
will	note	that	it's	currently	off:

3.	 Click	on	the	In-App	Purchasing	button	to	open	it	up	and	then	click	on	the
Enable	button.

4.	 From	there,	you'll	see	the	button	change	to	say	Import	instead.	Unity	IAP

requires	us	to	import	a	package	for	us	to	create	IAPs,	so	let's	go	ahead	and
click	on	the	Import	button	and	wait	for	it	to	finish.

5.	 You'll	note	that	when	it	finishes,	you'll	have	a	new	folder	named	Plugins
created	and	a	popup	saying	that	it	needs	to	determine	whether	our	project	is
configured	properly	and	asking	whether	we	want	to	install	it:

6.	 Go	ahead	and	click	on	the	Install	Now	function	and	wait	for	it	to	finish.

If,	for	some	reason,	you	encounter	any	errors	at	this	point	in	the
Console	window,	try	to	first	close	and	then	open	the	Services
window	again	and	check	whether	Unity	IAP	is	enabled.	If	that
doesn't	work,	disconnect	and	reconnect	it	to	the	internet	and	then
sign	back	into	Unity	Services	and	then	re-enable	Unity	IAP.

If	all	goes	well,	you	should	see	an	Import	Unity	Package	window
coming	up:

7.	 Click	on	the	Import	button	and	wait	for	it	to	be	inserted	into	our	project.	It
may	say	that	an	API	Update	is	required.	This	is	likely	because	the	version
of	Unity	that	you're	using	is	newer	than	the	last	update	of	the	Unity	IAP
API.	Go	ahead	and	click	on	the	I	Made	a	Backup.	Go	ahead!	button	and
wait	for	it	to	finish.

8.	 Once	it's	done,	scroll	up	to	the	top	of	the	Services	tab	and	click	on	the	Back
to	Services	button,	as	follows:

Once	you	come	back,	you	should	note	that	both	Analytics	and	In-App
Purchasing	are	now	set	to	ON.

The	IAP	package	is	created	externally	from	the	main	engine	itself
because	the	code	is	meant	to	be	extremely	flexible	and	can	be
updated	to	fit	any	policies	that	are	needed	and	then	we	can	just
update	the	package	instead	of	having	to	update	it	to	the	latest
version	of	Unity,	which	can	be	very	important	when	working	on	a
large	project.

Creating	our	first	purchase
To	make	our	first	in-app	purchase,	we	will	make	use	of	a	feature	of	Unity	that
was	just	added	to	our	project,	Codeless	IAP.	It	is	called	Codeless	IAP	because
you	do	not	need	to	write	any	code	for	the	actual	IAP	transaction,	just	the	script
that	defines	what	users	get	if	they	make	the	purchase.	It's	by	far	the	easiest	way
to	integrate	in-app	purchases	in	Unity	games	and	a	great	way	to	start	trying	IAPs
in	our	project.

One	of	the	most	common	in-app	purchases	is	the	ability	to	disable
advertisements	in	mobile	games.	Let's	add	that	functionality	now	by	creating	a
button	that	when	clicked	will	do	just	that:

1.	 Let's	first	open	up	our	Main	Menu	level	by	going	to	the	Project	window,
opening	the	Assets/Scenes	folder,	and	then	double-clicking	on	the	MainMenu	file.

2.	 From	there,	let's	click	on	the	2D	button	to	go	into	2D	mode	since	we'll	be
working	with	UI.

3.	 We	will	first	need	to	have	something	to	sell;	to	do	that,	we	will	use	the	IAP
Catalog,	which	we	can	access	by	going	to	Window	|	Unity	IAP	|	IAP
Catalog:

4.	 Now,	the	first	thing	we'll	need	to	do	is	create	an	ID	for	our	product,	which
is	how	we	identify	our	product	in	different	app	stores.	In	our	case,	let's	go
with	removeAds.	Then,	under	Type,	change	it	to	Non	Consumable:

By	non-consumable,	we	mean	that	the	players	only	need	to	buy	this
once,	and	the	game	will	keep	that	in	mind	for	later	purposes.	The
others	are	consumable,	meaning	that	they	are	used	for	things	that	can
be	bought	over	and	over	again,	such	as	special	power	ups	and
subscriptions.	These	give	access	to	some	kind	of	content	for	a	period
of	time,	possibly	recurring	until	a	user	cancels	them.

5.	 Next,	we	can	close	out	of	the	IAP	Catalog	by	clicking	on	X	in	the	top-right
corner	of	the	window.

6.	 Select	the	Canvas	-	Scale	Physical	object	in	the	Hierarchy	window.	From
there,	select	Window	|	Unity	IAP	|	Create	IAP	Button,	and	you	should	see	a
new	button	created	in	our	scene.

7.	 Create	a	Panel	object	and	have	it	fill	the	entire	screen	as	we	did	before.	Add
a	Vertical	Layout	Group	(Script)	component	to	it.	From	there,	change	the
Child	Alignment	to	Middle	Center	and	set	all	of	the	Padding	and	Spacing	to
10.

8.	 Then,	add	a	Content	Size	Fitter	component	and	set	the	Vertical	Fit	and

Horizontal	Fit	field	to	Preferred	Size:

9.	 Rename	the	newly	added	button	to	Remove	Ads	and	then	add	a	Horiztonal
Layout	Group	component	to	it	with	all	of	the	Padding	set	to	10	and	check
Width	and	Height	to	the	Child	Controls	Size	property.	Also,	add	a	Content
Size	Fitter	component	to	it	with	both	Fits	set	to	Preferred	Size.	Then,	in	the
child	Text	object's	Text	component,	change	the	text	property	to	show	Remove
Ads	instead.

10.	 Finally,	drag	and	drop	the	two	buttons	onto	the	Panel	with	the	Play	button
first	and	the	Remove	Ads	button	below	it,	as	follows:

11.	 Next,	with	the	Remove	Ads	object	selected,	move	to	the	Inspector	tab	and
scroll	down	to	the	IAP	Button	component.	Under	Product	ID:,	select	the
dropdown	and	select	removeAds.	You'll	note	that	the	IAP	Button	class	has	an	On
Purchase	Complete	function	that	works	similar	to	the	On	Click	that	we've
used	with	Buttons	in	the	past.	With	that	in	mind,	we	will	need	to	create	a
function	that	will	use	this.

12.	 Go	into	the	UnityAdController	script	and	add	the	following	variable:

public	class	UnityAdController	:	MonoBehaviour

{

				//	If	we	should	show	ads	or	not

				public	static	bool	showAds	=	true;

				//	Nullable	type	

				public	static	DateTime?	nextRewardTime	=	null;

				//	Rest	of	UnityAdController...

We	will	use	this	variable	to	check	whether	we	should	show	ads	or
not.

13.	 Next,	we	will	need	to	open	up	the	MainMenuBehaviour	script	and	replace	it	with
the	following:

using	UnityEngine;	

using	UnityEngine.SceneManagement;	//	LoadScene	

	

public	class	MainMenuBehaviour	:	MonoBehaviour	

{	

				///	<summary>	

				///	Will	load	a	new	scene	upon	being	called	

				///	</summary>	

				///	<param	name="levelName">The	name	of	the	level	we	want		

				///	to	go	to</param>	

				public	void	LoadLevel(string	levelName)	

				{	

								SceneManager.LoadScene(levelName);	

	

								#if	UNITY_ADS	

	

								if	(UnityAdController.showAds)	

								{	

												//	Show	an	ad	

												UnityAdController.ShowAd();	

								}	

	

								#endif	

				}	

	

				public	void	DisableAds()	

				{	

								UnityAdController.showAds	=	false;	

	

								//	Used	to	store	that	we	shouldn't	show	ads	

								PlayerPrefs.SetInt("Show	Ads",	0);	

				}	

	

				virtual	protected	void	Start()

				{

								//	Initialize	the	showAds	variable	

								UnityAdController.showAds	=	(PlayerPrefs.GetInt("Show	Ads",	1)	==	1);

				}

}

14.	 Note	that	I	made	this	function	virtual,	which	means	that	inherited	classes
can	also	use	this.	With	that	in	mind,	we	will	also	need	to	update	Start
function	of	the	PauseMenuBehaviour	to	the	following:

protected	override	void	Start()

				{

								//	Initalize	Ads	if	needed

								base.Start();

								paused	=	false;

								//	If	no	ads	at	all,	just	unpause	

								#if	!UNITY_ADS	

												SetPauseMenu(false);	

								#else	

	

								//	If	we	support	ads	but	they're	removed,	unpause	as	well	

								if	(!UnityAdController.showAds)	

								{	

												SetPauseMenu(false);	

								}	

	

								#endif	

				}

The	override	keyword	makes	it	so	that	it	will	replace	the	default
behavior	of	Start.	However,	when	we	call	base.Start()	we	are	ensuring
that	the	preceding	content	from	MainMenuBehaviour	will	be	called--in	this
case,	we	ensure	that	the	UnityAdController	has	the	correct	value	set.

15.	 Finally,	we	will	need	to	adjust	the	ObstacleBehaviour	script	to	handle	not
playing	ads	as	well.	Update	the	ShowContinue	function	to	use	the	following:

//	Other	code	above...

																//	Come	back	after	1	second	and	check	again	

																yield	return	new	WaitForSeconds(1f);

												}

												else	if	(!UnityAdController.showAds)

												{

																//	It's	valid	to	click	the	button	now

																contButton.interactable	=	true;

																//	If	player	clicks	on	button	we	want	to	just	continue

																contButton.onClick.AddListener(Continue);

																UnityAdController.obstacle	=	this;

																//	Change	text	to	allow	continue

																btnText.text	=	"Free	Continue";

																//	We	can	now	leave	the	coroutine

																break;

												}	

												else

												{

																//	It's	valid	to	click	the	button	now	

																contButton.interactable	=	true;

																//	More	code	below...

16.	 Save	your	script	and	dive	into	Unity.
17.	 From	the	Hierarchy	window,	select	the	Remove	Ads	button.	Go	into	the

Inspector	tab	and	then	scroll	down	to	IAP	Button	(Script).	Go	ahead	and
click	on	the	plus	button	underneath	the	On	Purchase	Complete	option	and
then	add	the	Main	Menu	object	in	the	little	box	on	the	bottom	of	the	side	below
the	Runtime	Only	dropdown	and	then	select	Main	Menu	Behaviour	|
DisableAds	from	the	dropdown	to	the	right:

18.	 Now,	save	our	scene	and	start	the	game:

Now,	if	we	click	on	the	Remove	Ads	button,	it	will	ask	whether	we	want	to
make	the	purchase.	If	we	do,	it	will	then	make	it	so	when	we	go	into	the	game,
there	are	no	ads.

Likewise,	now	when	we	die,	it	will	display	a	Free	Continue	button:

With	that,	we	now	have	the	Unity	end	of	creating	a	simple	purchase	completed.

If	you're	interested	in	learning	more	about	Codeless	IAP,	check	out	
https://docs.unity3d.com/Manual/UnityIAPCodelessIAP.html.

If	you'd	like	to	dive	into	more	customizable	forms	of	IAPs,	you	may
access	the	library	directly.	Information	on	that	can	be	found	at	https:
//unity3d.com/learn/tutorials/topics/ads-analytics/integrating-unity-iap-your-game.

https://docs.unity3d.com/Manual/UnityIAPCodelessIAP.html
https://unity3d.com/learn/tutorials/topics/ads-analytics/integrating-unity-iap-your-game

Adding	button	to	restore	purchases
On	platforms	that	support	it	(Google	Play	and	Universal	Windows	Applications,
most	notably),	if	you	purchase	something,	uninstall,	and	then	reinstall	a	game
using	Unity	IAP,	it	automatically	restores	any	products	the	user	owns	during	the
first	initialization	following	reinstallation.	For	those	on	iOS,	users	must	have	the
ability	to	restore	their	purchases	via	a	button	due	to	Apple	requiring	them	to
reauthenticate	their	password	before	it	happens.	Not	doing	so	will	prevent	our
game	from	being	accepted	on	the	iOS	App	Store,	so	it's	a	good	idea	to	include
this	functionality	if	we	wish	to	deploy	there,	as	follows:

1.	 Go	to	the	Hierarchy	window	and	select	the	Remove	Ads	button.	Once
selected,	duplicate	it	by	pressing	Ctrl	+	D.

2.	 Change	the	duplicate's	name	by	selecting	it	and	changing	its	name	to	Restore
from	Inspector.

3.	 From	the	Hierarchy	tab,	open	up	the	Text	object	and	change	the	text	to	say
Restore	as	well:

4.	 Now,	select	the	Restore	object,	and	then	in	the	IAP	Button	component,	go
to	Button	Type	and	select	Restore:

You	should	note	that	the	properties	change	to	only	have	this	type.

5.	 Save	your	scene	and	jump	into	Unity:

When	you	start	the	game	and	try	to	click	on	the	Restore	button,	you'll
get	a	warning	stating	that	this	isn't	a	supported	platform.	So,	with	that
in	mind,	we	can	adjust	our	game	so	that	the	button	will	only	show	up

if	we	are	currently	running	on	a	supported	platform.

6.	 Go	to	the	Scripts	folder	and	create	a	C#	script	called	RestoreAdsChecker.	Once
it's	opened,	use	the	following	script	for	it:

using	UnityEngine;

using	UnityEngine.Purchasing;

///	<summary>	

///	Will	show	or	remove	a	button	depending	on	if	we	can	restore	///	ads	or	not	

///	</summary>	

public	class	RestoreAdsChecker	:	MonoBehaviour

{

				//	Use	this	for	initialization	

				void	Start()

				{

								bool	canRestore	=	false;

								switch	(Application.platform)

								{

												//	Windows	Store	

												case	RuntimePlatform.WSAPlayerX86:

												case	RuntimePlatform.WSAPlayerX64:

												case	RuntimePlatform.WSAPlayerARM:

												//	iOS,	OSX,	tvOS	

												case	RuntimePlatform.IPhonePlayer:

												case	RuntimePlatform.OSXPlayer:

												case	RuntimePlatform.tvOS:

																canRestore	=	true;

																break;

												//	Android	

												case	RuntimePlatform.Android:

																switch	(StandardPurchasingModule.Instance().appStore)

																{

																				case	AppStore.SamsungApps:

																				case	AppStore.CloudMoolah:

																								canRestore	=	true;

																								break;

																}

																break;

								}

								gameObject.SetActive(canRestore);

				}

}

This	script	goes	through	all	of	the	stores	listed	in	Unity's	IAPButton
class,	and	if	they	are	something	that	can	be	restored,	we	set	canRestore
to	true,	otherwise	it	will	stay	as	false.	Finally,	we	will	remove	the
object	if	we	cannot	restore	it,	without	having	to	create	specific	things
for	different	builds.

7.	 Save	the	script	and	dive	back	into	Unity.
8.	 Attach	our	newly	created	RestoreAdsChecker	component	to	our	Restore	button.

9.	 Save	your	project	and	start	up	the	game:

On	our	PC	build	of	the	game,	the	Restore	button	doesn't	show	up,	but	if	we
export	for	iOS	it	will	be	on	our	device!

Configuring	purchases	for	the	stores
of	your	choice
Unfortunately,	we	do	not	have	enough	room	in	the	book	to	go	step	by	step
through	the	process	for	every	store,	but	I	do	have	pages	that	you	can	reference	to
go	through	the	entire	process	for	the	following	stores:	Apple	App	Store	and	Mac
App	Store:	https://docs.unity3d.com/Manual/UnityIAPAppleConfiguration.html.

Google	Play	Store:	https://docs.unity3d.com/Manual/UnityIAPGoogleConfiguration.html.

Windows	Store:	https://docs.unity3d.com/Manual/UnityIAPWindowsConfiguration.html.

Amazon	Appstore	and	Amazon	Underground:	https://docs.unity3d.com/Manual/UnityIAPA
mazonConfiguration.html.

Samsung	Galaxy:	https://docs.unity3d.com/Manual/UnityIAPSamsungConfiguration.html.

Tizen	Store:	https://docs.unity3d.com/Manual/UnityIAPTizenConfiguration.html.

CloudMoolah	Moo	Store:	https://docs.unity3d.com/Manual/UnityIAPMoolahConfiguringMooStor
e.html.

There	are	some	potential	issues	when	trying	to	publish	to	multiple
Android	IAP	stores	(such	as	Samsung	and	Google)	with	the	same
build.	You	can	find	information	on	resolving	those	issues	at	https://do
cs.unity3d.com/Manual/UnityIAPCrossStoreInstallationIssues.html.

https://docs.unity3d.com/Manual/UnityIAPAppleConfiguration.html
https://docs.unity3d.com/Manual/UnityIAPGoogleConfiguration.html
https://docs.unity3d.com/Manual/UnityIAPWindowsConfiguration.html
https://docs.unity3d.com/Manual/UnityIAPAmazonConfiguration.html
https://docs.unity3d.com/Manual/UnityIAPSamsungConfiguration.html
https://docs.unity3d.com/Manual/UnityIAPTizenConfiguration.html
https://docs.unity3d.com/Manual/UnityIAPMoolahConfiguringMooStore.html
https://docs.unity3d.com/Manual/UnityIAPCrossStoreInstallationIssues.html

Summary
In	this	chapter,	we	covered	how	to	create	in-app	purchases,	making	use	of	Unity
in	your	project.	We	first	covered	how	to	set	up	Unity's	IAP	system	and	then
dived	into	using	Codeless	IAP	to	easily	add	a	purchasable	item	to	your	game.
We	then	created	the	functionality	to	restore	our	purchase	if	we	uninstall	and
reinstall	our	game	and	went	over	where	we	can	go	to	set	up	our	purchases
depending	on	the	store	we	want	to	target.

Now,	of	course,	having	all	these	ways	to	make	money	isn't	going	to	help	us	if	no
one	is	playing	our	game.	In	the	next	chapter,	we	will	get	social,	learning	how	we
can	make	use	of	social	media	to	share	our	score	and	get	other	players	interested
in	our	title.

	

Getting	Social
	

We	now	have	all	of	the	foundational	things	needed	to	get	our	game	out	into	the
world;	it's	mechanically	working,	and	we've	set	up	all	of	the	monetization.
Having	all	of	the	features	that	we	have	added	to	our	projects	is	great,	but	if	no
one	is	playing	your	game,	there's	no	reason	to	have	them.

Word	of	mouth	marketing	is	the	most	reliable	way	to	get	others	to	try	your	game,
so	providing	people	opportunities	to	share	the	game	is	an	easy	way	to	help	others
discover	the	project	and	something	that	we	should	really	try	to	do,	as	marketing
and	getting	your	game	out	there	is	one	of	the	hardest	things	to	do	as	an	indie
developer.

	

	

	

Chapter	overview
In	this	chapter,	you	will	learn	some	of	the	different	ways	to	integrate	social
media	into	your	projects.

Your	objectives
	

This	chapter	will	be	split	into	a	number	of	topics.	It	will	contain	a	simple	step-
by-step	process	from	beginning	to	end.	The	following	is	the	outline	of	our	tasks:

Adding	in	a	score	system
Sharing	high	scores	via	Twitter
Downloading	and	installing	the	Facebook	SDK
Logging	to	our	game	via	Facebook
Displaying	Facebook	name	and	profile	picture

	

	

Adding	a	score	system
	

In	order	to	provide	incentive	to	players	to	share	our	game	with	others,	we	need
to	provide	a	compelling	reason	to	do	so.	Some	people	are	very	competitive	and
wish	to	be	the	best	at	playing	a	game,	challenging	others	to	do	better	than	them.
To	help	with	that,	we	can	allow	our	players	to	share	a	score	value	via	social
media.	However,	to	do	that,	we'll	first	need	to	have	a	scoring	system.	Thankfully,
it's	not	too	difficult	to	do	that,	so	let's	add	that	in	real	quick:

1.	 Start	off	by	opening	the	Gameplay.scene	file	located	in	the	Assets/Scenes	folder.

To	show	our	players	what	their	score	is,	we'll	need	to	have	some	way
to	show	it.	In	our	case,	the	easiest	way	would	be	with	a	text	object.

2.	 From	the	Hierarchy	window,	right-click	on	the	Canvas	object	and	select	UI
|	Text.

3.	 Rename	this	object	Score	Text	and	use	the	Anchors	Preset	menu	to	the	top-
center,	holding	down	Shift	+	Alt	to	set	the	pivot	and	position	as	well.
Afterward,	let's	set	the	RectTransform	component's	Height	property	on	the
object	to	50	to	ensure	that	we	have	space	to	hold	the	score	when	we	increase
the	size.

4.	 Next,	in	the	Text	component,	change	the	Text	property	to	0	and	set	the
Alignment	to	be	centered.	Afterward,	set	the	Font	Size	to	40	so	that	it's	easy
to	see.

5.	 To	improve	its	readability,	let's	add	another	component,	the	Outline,	by
going	to	Add	Component	and	then	typing	in	Outline	and	pressing	Enter.

6.	 From	there,	set	the	Effect	Color	field	to	White:

7.	 Next,	open	up	the	PlayerBehaviour	script	and	add	the	following	line	at	the	top:

using	UnityEngine.UI;	//	Text

8.	 Afterward,	add	the	following	code	inside	the	class:

private	float	score	=	0;	

public	Text	scoreText;	

	

public	float	Score	

{	

				get	{	return	score;	}		

				set	

				{	

								score	=	value;	

	

								//	Update	the	text	to	display	the	whole	number	portion	//	of	the	score	

								scoreText.text	=	string.Format("{0:0}"	,score);	}	

}

This	makes	use	of	C#'s	get/set	functions,	which	are	implicit	getters
and	setters.	Basically,	any	time	we	get	or	set	the	Score	variable,	we
will	execute	whatever	is	located	between	the	{}.	In	our	case,	any	time
we	set	the	Score	variable,	it	will	update	our	text	for	us.

This	has	an	advantage	over	what	a	number	of	my	students	do,	which
is	to	update	the	value	of	the	text	every	frame,	which	doesn't	need	to
happen.	We	only	need	to	update	the	text	when	the	value	changes,
which	makes	it	perfect	for	us	to	use	in	this	situation.

For	more	information	on	the	get/set	accessors,	check	out	https://docs.m
icrosoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/using-propertie
s.

9.	 Then,	update	the	class	to	have	the	following	highlighted	changes:

///	<summary>	///	Use	this	for	initialization	///	</summary>	

				new	void	Start	()	

			{	

								//	Get	access	to	our	Rigidbody	component	rb	=	GetComponent<Rigidbody>();	

							Score	=	0;	

			}	

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/using-properties

	

				///	<summary>	

				///	Update	is	called	once	per	frame	///	</summary>	

				void	Update	()	

			{	

								//	If	the	game	is	paused,	don't	do	anything	if	(PauseMenuBehaviour.paused)	

return;	

								Score	+=	Time.deltaTime;	

	

								//	Movement	in	the	x	axis	float	horizontalSpeed	=	0;	

			//	Rest	of	Update	here...	

What	we	are	doing	here	is	resetting	our	score	whenever	the	Player	is
created	and	increasing	the	value	while	the	game	isn't	paused.

10.	 Save	the	script	and	dive	back	into	Unity.
11.	 Select	the	Player	object	and	drag	and	drop	our	Score	Text	object	into	the

Score	Text	variable,	as	follows:

Now,	as	you	can	see,	we	have	a	score	for	our	game,	which	updates	as	we	play.

	

	

	

Sharing	high	scores	via	Twitter
Now	that	we	have	a	scoring	system,	let's	take	a	look	at	how	we	can	share	a	high
score	using	Twitter.

Twitter	is	an	online	news	and	social	networking	service	where	users	post	and
interact	with	each	other	through	messages	that	they	call	tweets,	which	are	limited
to	280	characters.

Twitter	is	a	great	option	to	start	off	with	because	it	is	very	easy	to	add	to	our
project	by	simply	opening	a	specific	URL:

1.	 Open	the	PauseMenuBehaviour	script.	Once	inside	there,	we	will	add	the
following	code	inside	the	PlayerMenuBehaviour	class:

#region	Share	Score	via	Twitter	

	

//	Web	address	in	order	to	create	a	tweet	

private	const	string	tweetTextAddress	=		

																												"http://twitter.com/intent/tweet?text=";	

	

//	Where	we	want	players	to	visit	

private	string	appStoreLink	=	"http://johnpdoran.com/";	

	

//	Reference	to	the	player	for	the	score	

public	PlayerBehaviour	player;	

	

///	<summary>	

///	Will	open	Twitter	with	a	prebuilt	tweet.	When	called	on	iOS	or		

///	Android	will	open	up	Twitter	app	if	installed	

///	</summary>	

public	void	TweetScore()	

{	

				//	Get	contents	of	the	tweet	(in	URL	friendly	format)	

				string	tweet	=	"I	got	"	+	string.Format("{0:0}",	player.Score)		

+	"	points	in	Endless	Roller!	Can	you	do	better?";	

	

				//	Open	the	URL	to	create	the	tweet	

				Application.OpenURL(tweetTextAddress	+	WWW.EscapeURL(tweet	+		

																								"\n"	+	appStoreLink));	

}	

	

#endregion	

First	of	all,	we	will	use	a	number	of	new	things.	You'll	note	that	this
new	block	of	code	starts	and	ends	with	#region	and	#endregion,
respectively.	What	this	does	is	allow	us	to	expand	and	collapse	this

portion	of	code	inside	Visual	Studio.	When	we	introduce	longer	code
files,	it	can	be	convenient	to	be	able	to	collapse	or	hide	certain	parts
of	your	script	so	that	you	can	focus	only	on	the	part	of	the	file	you're
working	on.	Since	this	portion	of	code	has	nothing	to	do	with	the	rest
of	the	script,	this	is	a	good	place	for	us	to	use	it.

To	open	URLs	inside	of	Unity,	we	will	need	to	make	use	of	the
Application.OpenURL	function	and	the	WWW	class.

For	more	information	on	Twitter's	web	Intents	and	the	ways	you
can	use	it,	check	out	https://dev.twitter.com/web/intents.

The	WWW	class	is	typically	used	to	load	content	at	runtime,	but	it	also
has	the	EscapeURL	function,	which	will	convert	a	string	into	a	format
that	web	browsers	are	comfortable	with.	For	instance,	the	newline
character	will	not	be	displayed	by	itself.

For	more	information	on	the	EscapeURL	function,	check	out	https://docs.u
nity3d.com/ScriptReference/WWW.EscapeURL.html.

2.	 Save	the	script	and	dive	back	into	Unity.	From	the	Hierarchy	window,
select	the	Pause	Menu	Behaviour	object	and	then	set	the	Player	property	in
the	Inspector	tab	to	our	Player	object	by	dragging	and	dropping	the	Player
game	object	from	the	Hierarchy	window	onto	the	Player	property	in	the
Inspector:

https://dev.twitter.com/web/intents
https://docs.unity3d.com/ScriptReference/WWW.EscapeURL.html

3.	 Now,	we	need	to	have	a	button	for	our	Game	Over	screen	to	allow	us	to
share	our	score.

4.	 Open	up	the	Canvas	object	and	toggle	the	Game	Over	object	on	by	clicking
on	the	checkmark	beside	its	name	in	the	Inspector	window.

5.	 From	there,	expand	the	Panel	and	the	Game	Over	contents.	Select	the	Menu
Button	and	duplicate	it	by	pressing	Ctrl	+	D.	Next,	change	the	name	to	Tweet
Score	and	also	update	the	text.

6.	 Afterward,	select	the	Tweet	Score	button	object	and	scroll	down	to	the
Button	component.	From	there,	change	the	function	we	are	calling	to	the
PauseScreenBehaviour	|	Tweet	Score	function:

7.	 Select	the	Game	Over	object	in	the	Hierarchy	and	disable	it	again.	Next,
save	your	scene	and	start	the	game.

Now	when	we	fail	the	game,	we	can	click	on	the	Tweet	Score	button	and	our
browser	will	open	on	PC:

However,	on	our	mobile	devices,	it	will	open	up	the	Twitter	app:

With	that,	you	learned	just	how	easy	it	is	to	share	something	using	Twitter.

For	those	who	are	interested	in	doing	more	than	this	with	Twitter,
they	do	have	their	own	API	for	Unity,	which	will	allow	you	to	let
users	log	in	to	your	game	using	Twitter	if	you'd	like	to	do	that
instead	of	Facebook,	which	we	will	be	doing	later	on.	If	you're
interested	in	looking	into	it,	you	can	find	more	information	at	https://
dev.twitter.com/twitterkit/unity/overview.

https://dev.twitter.com/twitterkit/unity/overview

Downloading	and	installing
Facebook's	SDK
We	couldn't	have	a	chapter	on	social	networking	without	mentioning	Facebook.
Facebook	has	its	own	SDK	that	can	be	used	with	Unity.

1.	 Open	up	your	web	browser	and	visit:	https://developers.facebook.com/docs/unity/:

2.	 Click	on	the	Download	the	SDK	button	and	wait	for	it	to	finish
downloading.	Once	it	is	downloaded,	unzip	it	and	then	open	up	the	facebook-
unity-sdk-7.10.1	folder.	Then,	open	up	the	FacebookSDK	folder	and	you'll	see	a
single	file,	facebook-unity-sdk-7.10.1.unitypackage.

3.	 Double-click	on	the	unitypackage	file,	and	you	should	have	a	window	pop	up:

https://developers.facebook.com/docs/unity/

If	this	does	not	work,	you	can	also	go	to	Assets	|	Import	Package	|
Custom	Package	and	then	find	the	folder	that	you	unzipped	the	file	to
and	open	it	that	way.

4.	 Click	on	the	Import	button	and	wait	for	it	to	finish	loading.

Now,	in	order	to	use	the	Facebook	API,	we	will	first	need	to	have	a
Facebook	App	ID,	so	let's	do	that	next.

5.	 Go	back	to	your	web	browser	and	go	to	https://developers.facebook.com/:

https://developers.facebook.com/

6.	 From	the	preceding	page,	click	on	the	Get	Started	button	on	the	top-right
corner	of	the	screen.	From	there,	you'll	be	brought	to	a	screen	where	you
need	to	accept	Facebook's	Platform	Policy	and	Privacy	Policy.	Click	on	Yes
and	then	on	the	Register	button.

7.	 From	there,	then	you'll	see	a	screen	stating	that	you're	all	set	and	then	we
can	click	on	the	Create	App	ID	button.

8.	 Once	loaded,	set	your	Display	Name	and	Contact	Email	to	what	you	want
the	game	and	your	email	to	be	called,	respectively,	and	then	click	on	the
Create	App	ID	button	once	again.

9.	 If	you	haven't	added	a	credit	card	or	mobile	number	on	your	phone,	you'll
need	to	add	that	first.	So,	do	that	if	you	haven't	already,	and	the	app	should
be	created	after	these	steps.

10.	 Once	you're	brought	to	your	App's	page,	click	on	the	Dashboard	option	to
be	right	to	the	default	info	for	your	game.	Note	the	App	ID	and	copy	it	by
highlighting	it	and	then	pressing	Ctrl	+	C:

11.	 Return	to	Unity,	and	you	will	note	a	new	option	of	Facebook	on	the	top	bar.
Select	it	and	then	select	Edit	Settings.	Once	there,	click	on	Inspector	if	you
need	to	and	you'll	see	a	number	of	options	here.	Set	the	App	Id	(?)	to	our
created	App	ID	and	then	set	the	name	to	our	game's	name:

12.	 Now	that	we	have	set	that	up,	we	can	start	adding	onto	this.

There	are	a	few	other	properties	that	need	to	be	set	for	building	the
Facebook	SDK,	depending	on	the	mobile	platforms	you	are	trying

to	target.
For	Android,	check	out	https://developers.facebook.com/docs/unity/getting-starte
d/android.
For	iOS,	check	out	https://developers.facebook.com/docs/unity/getting-started/ios.

https://developers.facebook.com/docs/unity/getting-started/android
https://developers.facebook.com/docs/unity/getting-started/android
https://developers.facebook.com/docs/unity/getting-started/ios

Logging	in	to	our	game	via	Facebook
One	of	the	things	we	can	do	using	the	Facebook	API	is	allow	our	users	to	log	in
to	the	game	using	their	Facebook	account.	Then,	we	can	use	their	name	and
image	automatically	within	our	project:

1.	 Let's	first	open	up	our	Main	Menu	level	by	going	to	the	Project	window	and
open	the	Assets/Scenes	folder	and	then	double-click	on	the	MainMenu	file.

2.	 From	there,	let's	click	on	the	2D	button	to	go	into	2D	mode	if	you	haven't
done	so	previously.

What	we	will	do	is	remove	the	original	menu	and	instead	have	a
button	for	players	to	log	in	via	Facebook	or	play	as	a	guest	when	the
game	starts.

3.	 Go	to	the	Hierarchy	window	and	select	the	Canvas	-	Scale	Physical	object
and	expand	it.	Select	the	Panel	child	and	rename	it	Menu	Options.

4.	 Then,	duplicate	it	by	pressing	Ctrl	+	D.	Then,	rename	the	newly	created
object	Facebook	Login.	Select	the	Menu	Options	again	and	then	disable	it	by
going	to	the	Inspector	tab	and	then	clicking	on	the	check	beside	its	name:

We	will	have	the	Facebook	Login	object	turn	the	menu	on	when	needed.

5.	 Next,	open	the	Facebook	Login	options	and	remove	the	Restore	and	Button
objects.	Click	on	the	Remove	Ads	button,	right-click	on	the	IAP	Button
component,	and	then	select	Remove	component.	Duplicate	the	Remove	Ads
button	by	pressing	the	Ctrl	+	D	keys.	Then,	name	those	two	buttons
Facebook	Login	and	Continue	as	Guest,	changing	the	text	as	well:

6.	 Now	that	we	have	the	buttons	working	correctly,	we	need	to	write	the	script
that	will	allow	us	to	log	in.	Go	to	the	Scripts	folder	and	open	our	Main	Menu
Behaviour	script.

7.	 We	will	use	the	List	class	to	hold	the	permissions	we	want	to	access	on
Facebook	and	the	content	of	the	FB	class	in	the	Facebook	SDK.	So,	to	do
that,	we'll	first	add	the	following	to	the	top	of	the	script:

using	System.Collections.Generic;	//	List	

using	Facebook.Unity;	//	FB

8.	 Now,	add	the	following	code	within	the	class:

#region	Facebook	

	

								public	void	Awake()	

				{	

								//	We	only	call	FB	Init	once,	so	check	if	it	has	been	called		

								//	already	

								if	(!FB.IsInitialized)	

								{	

												FB.Init(OnInitComplete,	OnHideUnity);	

								}	

				}	

				///	<summary>	

				///	Once	initialized,	will	inform	if	logged	in	on	Facebook	

				///	</summary>	

				void	OnInitComplete()	

				{	

								if	(FB.IsLoggedIn)	

								{	

												print("Logged	into	Facebook");	

	

												//	Close	Login	and	open	Main	Menu	

												ShowMainMenu();	

								}	

				}	

	

				///	<summary>	

				///	Called	whenever	Unity	loses	focus	

				///	</summary>	

				///	<param	name="active">If	the	gmae	is	currently	active</param>	

				void	OnHideUnity(bool	active)	

				{	

								//	Set	TimeScale	based	on	if	the	game	is	paused	

								Time.timeScale	=	(active)	?	1	:	0;	

				}	

	

				///	<summary>	

				///	Attempts	to	log	in	on	Facebook	

				///	</summary>	

				public	void	FacebookLogin()	

				{	

								List<string>	permissions	=	new	List<string>();	

	

								//	Add	permissions	we	want	to	have	here	

								permissions.Add("public_profile");	

	

								FB.LogInWithReadPermissions(permissions,	FacebookCallback);	

				}	

	

				///	<summary>	

				///	Called	once	facebook	has	logged	in,	or	not	

				///	</summary>	

				///	<param	name="result">The	result	of	our	login	request</param>	

				void	FacebookCallback(IResult	result)	

				{	

								if	(result.Error	==	null)	

								{	

												OnInitComplete();	

								}	

								else	

								{	

												print(result.Error);	

								}	

				}	

	

				[Header("Object	References")]	

				public	GameObject	mainMenu;	

				public	GameObject	facebookLogin;	

	

				public	void	ShowMainMenu()	

				{	

								if	(facebookLogin	!=	null	&&	mainMenu	!=	null)	

								{	

												facebookLogin.SetActive(false);	

												mainMenu.SetActive(true);	

								}	

				}	

	

#endregion	

In	this	case,	we	are	accessing	the	player's	public	profile,	which
contains	information	such	as	their	name	and	their	profile	picture.

For	all	of	the	properties	that	we	can	get	access	to,	check	out	https://d
evelopers.facebook.com/docs/facebook-login/permissions#reference-public_profile.

9.	 Save	your	script	and	go	to	the	Facebook	Login	button	and	change	the
button's	OnClick()	action	to	now	call	your	function	by	clicking	on	the	+
button	and	then	dragging	and	dropping	the	Main	Menu	object	in	and	then
selecting	Main	Menu	Behaviour	|	Facebook	Login	instead:

10.	 Then,	on	the	Continue	as	Guest	button	under	the	Button	component,	go	to
the	On	Click	()	section	and	then	click	on	the	+	button.	Drag	and	drop	the
Main	Menu	object	into	it	and	select	the	MainMenuBehaviour	|
ShowMainMenu	function:

https://developers.facebook.com/docs/facebook-login/permissions#reference-public_profile

11.	 Finally,	we	will	need	to	set	the	variables	we	created.	Select	the	Main	Menu
object	in	the	Hierarchy	window	and	then	set	the	Main	Menu	and	Facebook
Login	properties:

Ensure	that	the	Facebook	Login	is	set	to	the	panel	object	holding	both
buttons.

12.	 Save	your	scene	and	start	the	game	and	click	on	the	Facebook	Login
button:

To	see	everything	properly	within	the	editor,	it's	a	good	idea	to
maximize	the	Game	tab,	which	you	can	do	by	right-clicking	on	the
Game	tab	and	selecting	Maximize	or	checking	the	Maximize	On
Play	option	on	the	toolbar.

Now,	you	should	see	a	menu,	which	is	asking	for	a	user	access	token,
a	value	that	every	profile	has	that	we	can	associate	with.	We'll	need	to
go	to	Facebook	to	get	that,	so	that's	what	we'll	do	next.

13.	 Click	on	the	Find	Access	Token	page,	and	a	web	browser	will	open	with	a
new	page:

14.	 You'll	then	need	to	click	on	the	need	to	grant	permissions	link	and	then	on
Continue	and	you'll	see	a	string	of	characters	under	user	token.	Copy	that
and	then	paste	it	into	Unity	and	then	click	on	the	Send	Success	button:

Now,	you'll	note	that	the	console	has	printed	that	we've	logged	into	Facebook
and	the	menu	has	closed	when	we've	sent	the	key.

For	more	information	on	user	access	tokens,	check	out	https://develope
rs.facebook.com/docs/facebook-login/access-tokens/#usertokens.

https://developers.facebook.com/docs/facebook-login/access-tokens/#usertokens

Displaying	Facebook	name	and
profile	pic
A	good	thing	to	do	is	to	personalize	our	game	to	fit	our	player.	So,	with	that,
once	the	player	logs	in,	we	will	welcome	them	and	display	their	image	on	the
screen	by	following	these	steps:

1.	 Go	to	the	MainMenuBehaviour	script	once	again.	From	there,	we'll	need	to	add	a
new	using	statement	as	to	display	an	image	and	change	text	we	need	to	use
Unity's	UI	system:

using	UnityEngine.UI;	//	Text	/	Image	

2.	 Afterward,	we	will	update	the	ShowMainMenu	function	and	add	some	new
functions	to	use:

public	void	ShowMainMenu()	

				{	

								if	(facebookLogin	!=	null	&&	mainMenu	!=	null)	

								{	

												facebookLogin.SetActive(false);	

												mainMenu.SetActive(true);	

	

												if	(FB.IsLoggedIn)

												{

																//	Get	information	from	Facebook	profile	

																FB.API("/me?fields=name",	HttpMethod.GET,	SetName);

																FB.API("/me/picture?width=256&height=256",	

																HttpMethod.GET,	SetProfilePic);

												}

								}	

									

				}	

	

				public	Text	greeting;	

	

				void	SetName(IResult	result)	

				{	

								if	(result.Error	!=	null)	

								{	

												print(result.Error);	

												return;	

								}	

	

								string	playerName	=	result.ResultDictionary["name"].ToString();	

								greeting.text	=	"Hello,	"	+	playerName	+	"!";	

	

								greeting.gameObject.SetActive(true);	

				}	

	

				public	Image	profilePic;	

	

				void	SetProfilePic(IGraphResult	result)	

				{	

								if	(result.Error	!=	null)	

								{	

												print(result.Error);	

												return;	

								}	

	

								Sprite	fbImage	=	Sprite.Create(result.Texture,	

																																							new	Rect(0,0,	256,	256),	

																																							Vector2.zero);	

								profilePic.sprite	=	fbImage;	

	

								profilePic.gameObject.SetActive(true);	

				}	

The	FB.API	function	makes	a	call	to	Facebook's	Graph	API	to	get	data
or	take	an	action	on	the	user's	behalf	and	allows	us	to	get	the
information	that	we	have	permission	to	as	defined	earlier.

In	our	case,	we	are	looking	for	the	name	and	the	profile	picture	of	the
user	and	calling	the	SetName	and	SetProfilePic	functions,	respectively,
once	we	have	obtained	that	data.

After	getting	the	data,	we	will	modify	the	image	or	string	to	display
this	new	data	that	we	retrieved.

For	more	information	on	the	FB.API	function,	check	out	https://developer
s.facebook.com/docs/unity/reference/current/FB.API.

3.	 Now,	we	will	need	to	actually	create	the	text	and	image	we	want	to	display.
Open	up	the	Canvas	-	Scale	Screen	object	in	the	Hierarchy	tab	and	right-
click	on	it	and	select	UI	|	Panel.

4.	 This	will	act	as	a	container	for	all	of	our	information	for	the	player.	Add	a
Horizontal	Layout	Group	with	the	Padding	and	Spacing	both	set	to	10.	From
there,	change	the	Child	Alignment	to	Lower	Center	and	then	check	Width
and	Height	under	the	Child	Control	Size	property.	Then,	add	a	Content	Size
Fitter	component	and	change	the	sizes	to	Preferred	Size.	Finally,	in	the
Anchor	Presets	menu,	hold	down	Alt+Shift	and	select	bottom-center.

5.	 Now,	select	the	Canvas	-	Scale	Screen	object	in	the	Hierarchy	tab	and	right-
click	on	it	and	select	UI	|	Text.

https://developers.facebook.com/docs/unity/reference/current/FB.API

6.	 Rename	the	next	Text	object	Greeting.	From	the	Anchors	Preset	menu	that
we	learned	about	earlier,	change	the	setting	to	bottom-stretch,	holding	the
Shift	+	Alt	to	adjust	the	anchors	and	presets	accordingly.	Then,	change	the
Height	to	75	so	that	it's	large	enough	to	increase	our	size.

7.	 Then,	adjust	the	Text	to	Welcome	and	the	size	to	something	larger	like	50,	and
then	adjust	the	Alignment	to	be	centered	vertically	and	horizontally.

8.	 Likewise,	let's	next	right-click	on	Canvas	-	Scale	Size	again,	and	this	time
select	Image.	From	there,	change	the	Width	and	Height	to	a	larger	value,
such	as	256.

You	may	have	noted	that	when	the	image	was	at	the	center,	the	image
was	drawn	on	top	of	our	menu.	This	is	possible	due	to	both	Canvas'
being	told	that	they	have	the	same	priority	in	being	drawn,	similar	to
how	z-fighting	works	for	2D	games.	To	fix	potential	problems	in	the
future,	we	will	instead	put	the	scaling	canvas	as	the	background
element.

9.	 To	do	this,	we	will	select	the	Canvas	-	Scale	Physical,	and	under	the	Canvas
component,	change	the	Sort	Order	to	1.

10.	 Now,	let's	go	ahead	and	drag	and	drop	the	Greeting	and	Image	objects	into
the	Panel.	You'll	note	that	the	image	has	reverted	back	to	becoming	super
small.	To	fix	this,	select	the	Image	object	and	add	a	Layout	Element
component	to	it.	From	there,	set	the	Min	Width	and	Min	Height	to	256:

The	Layout	Element	(Script)	component	is	great	for	allowing	you	to
override	things	that	Layout	Groups	will	do	by	default	and	can	be
useful	if	you're	not	getting	exactly	what	you	want	with	the	default
behavior.

For	more	information	on	the	Layout	Element	(Script)	component,
check	out	https://docs.unity3d.com/Manual/script-LayoutElement.html.

11.	 Now,	dive	back	into	the	Main	Menu	object	and	set	the	Greeting	and	Image
properties	in	the	MainMenuBehaviour	component.

12.	 Finally,	since	we	don't	want	them	visible	when	the	game	starts,	let's	turn	off
Greeting	and	our	Image	as	well.

	

13.	 Save	our	game,	and	start	it	up	again	going	through	the	appropriate	login
information:

As	you	can	see	in	the	preceding	screenshot,	I	retrieve	my	actual	Facebook	info
once	I've	logged	in.

For	more	information	on	the	Facebook	SDK	for	Unity	and
additional	examples	on	what	you	can	do	with	it,	check	out	;https://dev
elopers.facebook.com/docs/unity.

https://docs.unity3d.com/Manual/script-LayoutElement.html
https://developers.facebook.com/docs/unity

Summary
	

In	this	chapter,	we	were	introduced	to	some	of	the	potential	ways	that	we	can
share	our	game	with	others,	as	well	as	personalize	our	game	experiences,
utilizing	social	media	and	the	functionality	that	it	provides	to	us.	We	started	off
by	adding	in	a	simple	score	system	and	then	allowed	others	to	share	their	score
via	Twitter.	We	then	set	up	the	Facebook	SDK,	making	it	so	we	can	log	into	it	to
play	our	game	and	retrieve	information	about	our	users,	which	we	can	use	to
customize	their	gameplay	experience.

Now	that	we	have	people	playing	our	game,	we	may	want	to	see	what	they're
doing.	Then,	we	can	use	that	information	to	improve	and/or	tweak	our	game.	In
the	next	chapter,	we	will	take	a	look	at	how	we	can	do	this	using	tools	from
Unity	analytics.

	

	

	

Using	Unity	Analytics
Having	made	a	game	by	itself	is	a	wonderful	experience	and	a	lot	of	hard	work,
but	when	designing	projects,	you	have	to	rely	on	your	experience	and	gut
feelings	in	order	to	make	it	as	awesome	as	possible.	Often,	in	the	game	industry,
we	will	use	playtesting--a	method	where	selected	people	play	the	game,	watch
them,	and	then	we	use	the	feedback	we	receive	to	improve	the	project.

This	playtesting	is	most	often	done	in	person;	however,	by	creating	games	for
mobile,	a	lot	of	people	will	be	playing	your	game	after	release	and	most	of	them
will	have	an	internet	connection.	With	this,	we	can	send	pieces	of	data	about
how	the	game	is	being	played	to	ourselves.	This	will	still	allow	us	to	do
"playtesting"	with	a	large	variety	of	people.	Being	able	to	look	at	our	data	will
allow	us	to	check	whether	the	choices	that	are	made	to	change	the	game	are	the
right	ones,	and	we	will	be	able	to	make	adjustments	to	our	games	on	the	fly.

This	could	be	something	as	simple	as	where	the	player	dies	in	the	game	to	things
such	as	how	often	they	come	back	to	play,	the	daily	average	time	they	play,	the
number	of	users	we	have	at	a	time,	how	long	people	play	the	game	before
stopping,	and	what	choices	they	made.

Chapter	overview
In	this	chapter,	we	will	cover	some	of	the	different	ways	that	we	can	integrate
Unity's	Analytics	tools	into	our	projects.

This	chapter	already	assumes	that	you	have	Unity	analytics
activated.	If	you	haven't	done	so	yet,	refer	to	Chapter	5,	Advertising
with	Unity	Ads,	to	learn	how	to	create	an	account.

	

Your	objectives
This	chapter	will	be	split	into	a	number	of	topics.	It	will	contain	a	simple	step-
by-step	process	from	beginning	to	end.	Here	is	the	outline	of	our	tasks:

Setting	up	Unity	analytics
Tracking	custom	events
Working	with	the	funnel	analyzer
Tweaking	properties	with	remote	settings

Setting	up	analytics
Although	we	activated	Analytics	in	order	to	use	Unity's	Ads	system,	we	didn't
really	dig	into	the	system	itself.	Let's	finish	the	setup	for	that	now:

1.	 From	the	Unity	Editor,	open	the	Services	tab	(shown	in	the	top-right	side	of
the	next	screenshot)	by	either	selecting	it	or	going	to	Window	|	Services.

2.	 From	there,	scroll	down	and	click	on	the	Analytics	button:

As	long	as	Analytics	is	enabled,	the	Editor	sends	an	App	Start	event
to	the	Analytics	service	when	we	press	the	Play	button	to	start	the
game.

The	nice	thing	about	this	is	we	can	ensure	that	this	works	correctly
without	having	to	export	our	game.

3.	 Press	the	Play	button	on	the	game,	then	go	ahead	and	scroll	down	on	the
Analytics	tab;	you'll	note	a	new	menu	called	Validator,	which	shows	the
events	being	sent	to	Unity's	analytics	tool:

If	you	are	not	able	to	view	anything,	ensure	that	you	are	using	a
supported	platform,	such	as	Android	or	iOS.

4.	 You	can	also	see	that	people	are	playing	the	game	via	the	Unity	analytics
website--	for	this,	click	on	the	Go	to	Dashboard	button,	which	can	be	found
on	the	top-left	side	of	the	Services	tab.

5.	 From	there,	you	may	be	taken	to	a	welcome	screen.	Go	ahead	and	click	on
Agree.

6.	 Afterward,	you'll	be	led	to	the	following	menu:

7.	 From	there,	let's	click	on	Livestream.	This	information	updates	as	soon	as	it
receives	data	from	our	game	from	events	that	have	been	sent:

You'll	note	from	the	preceding	screenshot	that	I	currently	have	a	User	Logins
number	of	1	because	I've	run	the	game	from	the	Editor.	If	I	run	it	from	my
mobile	device	also,	that	would	increase	to	2.

With	that,	we	now	know	that	the	analytics	information	is	being	sent	and
received.

Tracking	custom	events
	

Unity	Analytics	does	a	number	of	different	things	automatically	to	make	it	easy
to	work	with;	however,	as	a	game	designer,	you	may	often	want	to	check
whether	certain	aspects	of	the	game	are	being	used	or	whether	players	are
reaching	certain	pieces	of	content.	To	keep	a	track	on	this,	we	can	make	use	of
the	Custom	Events	system.

Custom	Events	are	pieces	of	data	that	users	send	to	the	cloud	as	they	play	the
game.	Each	custom	event	can	have	its	own	parameters,	which	will	allow	us	to
filter	the	data	that	we	send	when	it	occurs.

	

	

	

Using	the	AnalyticsTracker
component
Now,	one	of	the	simplest	ways	to	track	when	something	occurs	is	through	the
editor	itself,	making	use	of	the	Analytics	Tracker	(Script)	component.	For
example,	perform	the	following	steps	when	you	want	to	track	whether	players
are	using	the	Pause	menu.

1.	 Open	the	Gameplay	scene	by	going	to	the	Project	window	and	then	to	the
Assets\Scenes	folder.	From	there,	double-click	on	the	Gameplay	scene.

2.	 From	the	Hierarchy	window,	expand	the	Canvas	object.	From	there,	select
Pause	Menu.

3.	 From	the	top	bar,	select	Component	|	Analytics	|	AnalyticsTracker	to	add
the	component	to	our	selected	game	object:

4.	 Next,	we	will	need	to	come	up	with	an	Event	Name	to	use.	In	this	case,	I
used	Paused.	Then,	under	Trigger,	select	the	dropdown	and	the	On	Enable
option.

This	means	that	if	we	turn	on	the	pause	menu	(or	rather	when	it	is

enabled),	an	event	will	be	sent.	Note	that	this	is	different	from	the	On
Start	event	due	to	that	event	only	happening	once	when	it	is	initially
turned	on.

5.	 Now,	start	the	game	and	then	pause	the	game.	If	you	go	to	the	Services	tab
and	open	up	Analytics,	you	should	note	from	the	Validator	that	a	new	event
has	been	added:

In	addition	to	seeing	this	data	in	the	Services	tab,	we	can	also	see	it	in
the	dashboard.

6.	 Go	ahead	and	scroll	up	in	the	Services	tab	and	select	the	Go	to	Dashboard
button	on	the	top-right	portion	of	the	tab.	From	there,	click	on	the	Data
Explorer	option.

7.	 From	the	Data	Explorer	tab,	you'll	see	a	section	for	Metrics	and	Custom
Events.	You'll	also	see	a	chart	that	shows	the	DAU	(Daily	Active	Users)
that	have	been	playing	your	project.	We	can	use	this	menu	to	observe
whenever	the	Paused	event	is	called.

If	you	have	just	created	the	event,	it	may	take	up	to	12	hours	for	the
information	to	be	received.	Go	ahead	and	check	back	later	whether
that's	the	case.

8.	 Click	on	the	+	button	to	the	left	of	Custom	Event	to	add	a	Custom	Event	to

this	graph.	Then,	select	the	Custom	Event	dropdown	and	select	Paused.
Since	we	have	just	made	the	event,	we	won't	see	it	in	previous	dates	in
Analytics,	but	we	can	see	it	a	little	easier	if	we	click	on	the	Column	Chart
button	to	change	how	the	data	is	displayed:

Notice	that	when	we	scroll	down	we	can	see	that	the	Data	Explorer	now	shows
that	the	Paused	event	has	been	called!

In	addition	to	the	calling	event,	you	can	also	add	parameters	to	the
events	in	a	similar	manner	to	how	Unity's	UI	system	works.	For
more	information	on	that	and	the	Analytics	Tracker	component,
check	out	https://docs.unity3d.com/Manual/UnityAnalyticsAnalyticsTracker.html.

https://docs.unity3d.com/Manual/UnityAnalyticsAnalyticsTracker.html

Customizing	events	through	code
It's	great	to	have	a	way	to	do	the	events	through	the	editor,	but	for	those	who	are
more	comfortable	working	with	code,	it's	also	just	as	easy	to	do	so.

One	additional	thing	that	we	may	want	to	track	is	how	far	players	get	before	they
lose.	Let's	take	a	look	at	how	to	do	that	now:

1.	 First,	we	will	need	to	open	up	the	ObstacleBehaviour	script	to	modify	what
happens	when	the	game	ends.

2.	 To	utilize	Unity	Analytics	at	the	top	of	the	file,	we	will	add	the	following
using	declarations:

using	UnityEngine.Analytics;	//	Analytics

using	System.Collections.Generic;	//	Dictionary

The	top	option	is	obvious,	but	we	are	also	adding
System.Collections.Generic	in	order	to	get	access	to	the	Dictionary	class,
which	we	will	use	in	the	next	piece	of	code.

3.	 Next,	we	will	update	the	OnCollisionEnter	function	to	the	following:

void	OnCollisionEnter(Collision	collision)

				{

								var	playerBehaviour	=	

								collision.gameObject.GetComponent<PlayerBehaviour>();

								//	First	check	if	we	collided	with	the	player	

								if	(playerBehaviour	!=	null)

								{

												//	Destroy	the	player	

												collision.gameObject.SetActive(false);

												player	=	collision.gameObject;

												var	eventData	=	new	Dictionary<string,	object>

												{

																{	"score",	playerBehaviour.Score	}

												};

												Analytics.CustomEvent("Game	Over",	eventData);

												//	Call	the	function	ResetGame	after	waitTime	has	passed	

												Invoke("ResetGame",	waitTime);

								}

				}

We've	done	a	number	of	things	within	this	script.	To	start	off	with,	we
have	rewritten	our	check	for	the	player	to	use	the	component	as	a
variable	now	so	that	we	don't	have	to	call	GetComponent	again	for	the
same	thing.

Aside	from	that,	the	main	addition	is	the	calling	of	the
Analytics.SendEvent	function.	This	function	takes	in	two	parameters.
The	first	is	a	string,	which	is	the	name	that	you	wish	for	the	event	to
have.	The	second	parameter	(which	is	optional)	is	a	dictionary,	which
we	haven't	discussed	yet.

A	dictionary	is	a	class	that	represents	a	pair	of	keys	and	values.	The
key	is	an	identifier	of	some	sort,	which	allows	us	to	have	a	reference
to	obtain	the	value.	This	is	most	often	used	with	strings	as	the	key	so
that	you	can	refer	to	some	other	data	type.

For	more	information	on	dictionaries,	check	out	http://csharp.net-inform
ations.com/collection/dictionary.htm.

4.	 Save	the	script	and	return	to	the	Unity	Editor.
5.	 Play	the	game	and	lose	it.	You	will	note	in	the	Validator	that	now	you	are

sending	a	Game	Over	event	with	your	score	value:

You	may	also	dive	into	the	Dashboard	to	see	the	information	as	well,

http://csharp.net-informations.com/collection/dictionary.htm

but	it	may	take	up	to	6	hours	before	it	will	be	visible.	Events	typically
take	a	few	hours	to	cycle.	You	will	see	them	instantly	on	the	Validator
(to	help	you	confirm	that	your	code	is	working),	but	they	don't
populate	into	analytics	until	backend	calculations	have	been
processed	on	Unity's	end	due	to	all	of	the	events	they	recieve.

6.	 After	you've	waited,	go	ahead	to	the	Analytics	tab	and	click	on	the	Go	to
Dashboard	button	once	again.

We	can	use	the	Data	Explorer	like	previously,	but,	in	our	case,	we
may	just	want	to	see	all	of	the	data	from	times	it	was	called.	For	that,
we	can	make	use	of	the	Event	Manager.

7.	 Once	there,	go	to	the	More	tab	and	click	on	it.	From	the	dropdown	that
pops	up,	click	on	Event	Manager:

The	Event	Manager	is	the	location	where	users	can	see	the	custom
events	that	were	received	from	users	playing	the	game	as	well	as	the
parameters	that	were	passed	to	them.

8.	 Scroll	down	to	the	Custom	Events	header--you'll	see	a	list	of	all	of	them
under	it,	with	the	Paused	option	and	the	Game	Over	event	created	in	this
section:

If	you	click	on	the	dropdown,	you	should	be	able	to	see	the	score	property,	and
clicking	on	that	will	show	all	the	values	received	whenever	it	was	called.

Instead	of	a	single	value,	we	can	pass	up	to	10	parameters	into	the	dictionary.
However,	the	value	must	be	one	of	the	following	types:

bool

string

int

float

Remember	that	you	can	always	convert	an	object	to	a	string	in	C#
using	the	ToString	function.

You	can	only	send	100	custom	events	per	hour	per	user,	so	you	should	not	be
doing	too	many	custom	events	in	the	game.	I	suggest	that	you	create	custom
events	for	whenever	a	user	reaches	an	important	milestone,	for	example,	when
they	level	up	or	if	they	make	an	In-App	Purchase	(IAP).

For	more	information	on	Analytics.CustomEvent	and	other	ways	it	can
be	called,	check	out	https://docs.unity3d.com/ScriptReference/Analytics.Analytics.
CustomEvent.html.

https://docs.unity3d.com/ScriptReference/Analytics.Analytics.CustomEvent.html

Working	with	the	funnel	analyzer
One	of	the	many	things	we'd	like	to	know	about	our	players	is	how	they	are
actually	playing	the	game.	Are	users	skipping	our	tutorial?	To	keep	track	of	how
players	go	through	a	series	of	events,	we	have	funnels.	Funnels	help	us	to
identify	where	drop-offs	happen	in	your	game.

If	you	happen	to	see	a	large	number	of	people	not	getting	to	a	certain	step,	you
can	assume	that	something	that	happened	in	the	preceding	step	is	causing	people
to	stop	playing	your	game.

Funnels	are	based	on	the	concept	of	custom	events	that	we	used	in	the	previous
two	sections	of	this	chapter:

1.	 From	the	Dashboard,	select	the	Funnel	Analyzer	section:

Right	now,	there	are	no	funnels	set	up,	so	we	should	create	one.

2.	 Click	on	the	New	Funnel	option:

3.	 Next,	scroll	all	the	way	down	and	then	click	on	the	Save	button:

4.	 You'll	get	a	notice	saying	that	the	funnel	has	been	submitted,	but	it	may	take
up	to	a	day	before	we	can	see	the	results	(at	least	10-12	hours).	Go	ahead
and	click	on	OK.

5.	 Now,	go	back	into	the	Unity	Editor	and	play	the	game	a	couple	more	times
and	ensure	that	you	pause	the	game	before	failing	to	fill	up	some	test	data
for	us	to	check	the	next	day:

6.	 You	should	be	able	to	select	that	funnel,	and	it	will	provide	information	of
all	the	times	it	has	been	called.

Tweaking	properties	with	remote
settings
Getting	a	new	build	of	your	game	exported	can	take	quite	a	bit	of	time.	It	takes
time	to	actually	make	the	changes	in	the	editor,	then	you	have	to	export	the	game
and	upload	a	new	version	on	each	of	the	App	Stores	you	are	targeting.	Then,	you
have	to	spend	time	waiting	on	them	to	approve	the	app	and	for	everyone	to
actually	download	it.

One	of	the	things	I	talk	to	my	students	about	is	creating	projects	that	can	be
easily	changed	without	having	to	open	up	the	Unity	Editor.	This	could	be	done
using	data-driven	development	practices--such	as	building	levels	or	encounters
using	text	files,	Asset	Bundles,	or	Unity's	Remote	Settings	menu--to	allow	us	to
instantly	modify	variables	in	copies	of	the	game	that	are	already	out.

One	of	the	things	we	may	want	to	be	able	to	update	is	tweaking	the	difficulty	of
our	game	by	changing	the	speed	at	which	the	player	moves.	So,	let's	take	a	look
at	how	we	can	do	that	now:

1.	 The	first	thing	we	will	need	to	do	is	create	the	variables	that	we	would	like
to	change.	Open	up	the	Analytics	dashboard	and	go	to	the	Remote	Settings
tab:

This	tab	is	the	location	where	we	can	set	and	modify	the	values.	Just
like	working	with	dictionaries,	remote	settings	are	key-value	pairs,
and	there	are	two	configurations	that	can	be	used:	Release	or
Development.	Release	is	used	by	computers	and	devices	running
regular	builds	of	your	game.	Development	is	the	mode	used	by
playing	the	game	in	the	Unity	Editor	as	well	as	any	builds	created
with	the	Development	Build	property	set	to	true	from	the	Build
Settings	window.

2.	 Click	on	the	Add	New	Key-Value	button	at	the	top-right	corner.	Under	the
Enter	Remote	Setting	Key	property,	type	RollSpeed.	Select	Float	under	the
Select	Type	dropdown	and	put	5	in	the	Value	field.	Finally,	click	on	the
Save	button.

3.	 Then,	let's	do	the	same	thing	for	the	DodgeSpeed	variable	with	a	value	of	5:

4.	 It's	important	to	note	that	this	doesn't	actually	make	the	change.	Note	how
there	is	a	big	blue	button	that	says	Sync.	Click	on	that	and	then	the	changes
will	be	deployed.	It'll	pop	up	a	window	asking	whether	you	want	to	confirm
the	changes:

5.	 Go	ahead	and	then	click	on	Sync.
6.	 Now	that	we	have	some	values	to	grab,	let's	take	a	look	at	how	we	can

actually	do	that.	Head	back	into	Unity	Editor.

7.	 In	order	to	use	the	Remote	Settings,	we	will	need	to	download	and	import

the	Remove	Settings	package.	To	do	this,	go	to	Window	|	Asset	Store	(or
press	Ctrl+9).

8.	 From	the	Asset	Store,	click	on	the	Search	bar	and	type	in	Remote	Settings	and
press	Enter:

9.	 From	there,	click	on	the	first	selection	of	the	Unity	analytics	Remote
Settings	option:

10.	 Next,	click	on	the	Download	button	to	add	it	to	our	project:

11.	 Upon	reaching	the	Import	Unity	Package	dialog,	go	ahead	and	click	on
Import	with	everything	selected:

I	deleted	the	MiniJSON.cs	file	that	was	included	with	the	Remote
Settings	due	to	it	already	being	defined	within	Unity's	IAP	scripts.
This	should	be	fixed	by	the	time	the	book	is	published,	but	I	am
including	it	just	in	case	it	shows	up.

12.	 Now	that	we	have	it	imported,	we	need	to	enable	it.	To	do	that,	we	will
need	to	go	to	Window	|	Unity	Analytics	|	Remote	Settings:

As	you	can	see	in	the	preceding	screenshot,	we	need	to	plug	in	the
project's	secret	key	in	order	to	make	use	of	these	features.	To	do	this,
we	will	need	to	once	again	go	to	the	Dashboard.

13.	 From	the	dashboard,	go	to	the	More	dropdown	and	select	Configure.

14.	 Scroll	down,	and	you	should	see	the	Project	Secret	Key	property	under
Feature	Settings:

You	should	keep	the	value	of	the	Project	Secret	Key	a	secret,	as	it
allows	others	to	have	access	to	your	project.

15.	 Copy	this	value	and	then	go	back	into	Unity	Editor,	paste	it	into	the	slot	and
then	click	on	the	Next	button.	If	all	goes	well,	you	should	see	the	menu
change:

16.	 To	make	it	easier	to	see,	I'm	going	to	drag	the	Remote	Settings	tab	and	drop
it	to	the	right	of	my	Scene	tab:

Now	it's	a	lot	easier	to	look	at	and	work	with.

17.	 Again,	this	doesn't	do	anything	yet,	so	let's	fix	that	next.
18.	 Open	up	the	Gameplay	scene	if	it	isn't	opened	up	already	and	select	the

Player	object	and	the	Inspector	tab.
19.	 Next,	go	to	Component	|	Analytics	|	Remote	Settings	to	add	the	Remote

Settings	component	to	the	object:

20.	 From	there,	click	on	the	+	button	to	add	a	new	parameter	for	the
component.

21.	 Drag	and	drop	the	Player	game	object	from	the	Hierarchy	tab	into	the
Object	section.	Then,	for	the	No	field	property,	select	Player	Behaviour	|
rollSpeed.	Then,	in	the	Remote	Setting	Key,	select	Roll	Speed	from	the
dropdown.

This	makes	the	rollSpeed	variable	in	the	PlayerBehaviour	class	set	to	the
Roll	Speed	value	in	the	Remote	Settings	menu.

22.	 Then,	do	the	same	thing	for	the	DodgeSpeed:

This	will	work	correctly	if	we	were	to	export	our	game,	but	currently
we	do	not	have	variables	set	up	for	the	Development	configuration.
This	means	that	when	playing	the	game	in	the	editor,	nothing	will
change.

23.	 Dive	back	into	the	dashboard,	and	go	to	the	Remote	Settings	tab.	Under	the
dropdown,	change	the	Release	value	to	Development	and	add	in	DodgeSpeed
and	RollSpeed	again,	but	give	them	both	a	value	of	0.	Finally,	click	on	the
Sync	button	to	update	the	values:

24.	 Next,	dive	back	into	the	Editor,	and	in	the	Remote	Settings	property,	click
on	the	Refresh	button.	You	will	note	that	the	Configuration	property	now
has	a	dropdown	where	you	can	select	something.	Go	ahead	and	select
Development	and	play	the	game:

As	you	can	tell,	in	this	version	of	the	game,	the	player	cannot	move	at
all	due	to	how	we	set	the	properties.	Now,	you	can	test	out	the	values
and	sync	them	in	the	Editor	and	modify	them	for	release	when	they're
ready.

25.	 Since	the	dodgeSpeed	and	rollSpeed	variables	are	now	being	set	via	the	Remote
Settings	component,	we	can	now	hide	them	from	the	Inspector.	Replace
their	declarations	so	that	the	class	looks	as	follows:

///	<summary>

///	Responsible	for	moving	the	player	automatically	and

///	receiving	input.

///	</summary>

[RequireComponent(typeof(Rigidbody))]

public	class	PlayerBehaviour	:	MonoBehaviour

{

					///	<summary>

					///	A	reference	to	the	Rigidbody	component

					///	</summary>

					private	Rigidbody	rb;

					///	<summary>

					///	How	fast	the	ball	moves	left/right

					///	</summary>

					[HideInInspector]

					public	float	dodgeSpeed	=	5;

				

					///	<summary>

								///	How	fast	the	ball	moves	forwards	automatically

					///	</summary>

					[HideInInspector]

					public	float	rollSpeed	=	5;

				public	enum	MobileHorizMovement

				{

								Accelerometer,

								ScreenTouch

				}

					///	Rest	of	the	file	here

26.	 Save	the	script	and	go	to	Inspector:

Now,	the	values	will	be	set	through	the	Remote	Settings	component,	and	users
won't	be	confused	about	why	their	values	are	being	replaced	from	what's	in	the
Player	Behaviour.

There's	a	lot	more	you	can	do	with	Remote	Settings.	You	can	learn
more	about	the	Remote	Settings	component	and	how	to	use	it	for
working	with	non-default	parameters	at	https://docs.unity3d.com/Manual/U
nityAnalyticsRemoteSettingsComponent.html.

https://docs.unity3d.com/Manual/UnityAnalyticsRemoteSettingsComponent.html

Summary
	

In	this	chapter,	we	explored	a	number	of	ways	that	we	can	make	use	of	Unity's
Analytics	tool	to	make	our	games	better:	from	how	to	tell	what	our	players	are
doing	to	learning	how	we	can	adjust	our	game	based	on	that	feedback	without
users	having	to	download	an	entire	new	copy	of	our	game.

With	this,	we	have	all	of	the	implementation	details	of	our	game	completed,	but
our	game	right	now	is	pretty	barebones.	In	the	next	chapter,	we	will	look	into
ways	to	make	our	game	more	polished	using	features	such	as	particle	systems
and	screen	shake.

	

	

	

Making	Your	Title	Juicy
	

We	now	have	a	basic	game,	but	it's	just	that...basic.	In	this	chapter,	you	will	learn
some	of	the	secrets	that	game	developers	use	to	take	the	basic	prototype	of	their
game	and	turn	it	into	something	with	a	lot	of	polish	that	feels	satisfying	to	play,
which	is	known	as	making	our	games	juicy.

Also	known	as	game	feel,	juicyness	is	a	kind	of	a	catch-all	term	for	all	the	things
that	we	do	in	a	game	to	make	it	pleasing	for	its	users	to	interact	with.	This	is
something	that	is	done	with	most	mobile	games	that	are	out	there	today,	and
lacking	this	kind	of	interactivity	will	make	others	believe	our	project	is	lacking
in	polish.

	

	

	

Chapter	overview
In	this	chapter,	you	will	learn	some	of	the	different	ways	that	you	can	integrate
features	of	juiciness	into	our	projects.

Your	objectives
This	chapter	will	be	split	into	a	number	of	topics.	It	will	contain	a	simple	step-
by-step	process	from	beginning	to	end.	Here	is	the	outline	of	our	tasks:

Working	with	Tweens
Working	with	materials
Using	post-processing	effects
Adding	particle	effects

Animation	using	iTween
	

Currently,	our	game's	menus	are	completely	static.	This	is	functional,	but	does
not	make	players	excited	about	playing	our	game.	To	make	the	game	seem	more
alive,	we	should	animate	our	menus.	Being	able	to	use	Unity's	built-in	animation
system	is	great,	and	it	can	be	quite	useful	if	you	want	to	modify	many	different
properties	at	once.	If	you	don't	need	precise	control,	if	you're	only	modifying	a
single	property,	or	if	you	want	to	animate	something	purely	via	code	you	can
also	make	use	of	a	tweening	library.	If	it	is	given	a	start	and	an	end,	the	library
will	take	care	of	all	the	work	in	the	middle	to	get	that	property	to	that	end	within
the	time	and	speed	you	specify.

One	of	my	favorite	tweening	libraries	is	PixelPlacement's	iTween,	which	is	open
source	and	usable	for	free	in	commercial	and	noncommercial	projects.

	

	

	

iTween	setup
Now	that	we	know	we	want	to	add	tweens	to	our	project,	let's	start	off	by
actually	adding	it	to	our	project:

1.	 Open	up	the	Asset	Store	tab	by	going	to	Window	|	Asset	Store.	Type	in
iTween	in	the	search	bar	at	the	top	and	then	press	Enter:

2.	 If	the	Asset	Store	tab	is	too	small	for	you,	like	it	is	here,	feel	free	to	drag	it
out	of	the	middle	section	and	resize	until	it	looks	nice	for	you.

3.	 From	there,	you'll	be	brought	to	a	list	of	items	with	the	first	one	being
iTween;	select	it,	and	you	will	be	brought	to	iTween's	product	page.	Click
on	the	Download	button:

4.	 From	there,	you'll	be	asked	to	log	in	to	your	Unity	account,	which	you
created	when	you	installed	Unity.	If	you	don't	have	one,	feel	free	to	click	on
Create	Account	and	do	so.	Once	logged	in,	click	on	Download	once	again,
and	if	it	doesn't	happen	automatically,	click	on	the	Import	button.

5.	 You	should	see	an	Import	Unity	Package	window	pop	up;	from	there,	you
can	check	or	uncheck	whatever	files	you	want	to	keep.	We	will	just	use
iTween.cs	here;	however,	the	others	may	be	useful	to	you,	should	you	wish	to
use	them	on	your	own.	Once	you're	finished	selecting	what	you	want,	click
on	the	Import	button:

6.	 We	don't	need	the	Asset	Store	tab	anymore,	so	go	ahead	and	close	it.	You'll
notice	that	now	we	have	the	files	we	have	selected	inside	our	Project	tab	in
the	Assets/Plugins/Pixelplacement/iTween	folder:

With	that,	we	now	have	iTween	set	up.

Creating	a	Simple	Tween
Now	that	we	have	iTween	included	in	our	project,	we	can	use	it	inside	of	our
code;	to	do	that,	perform	the	following	steps:

1.	 From	the	Unity	Editor,	open	the	MainMenu	level	by	going	to	the	Project
window	and	double-clicking	on	the	MainMenu	scene.

2.	 Now,	move	to	the	Scripts	folder	and	open	the	MainMenuBehaviour	by	double-
clicking	on	it.

3.	 Firstly,	we	will	add	the	following	new	function,	which	we	will	use:

///	<summary>	

///	Will	move	an	object	from	the	left	side	of	the	screen	

///	to	the	center	

///	</summary>	

///	<param	name="obj">The	UI	element	we	would	like	to	

///	move</param>	

public	void	SlideMenuIn(GameObject	obj)	

{	

			obj.SetActive(true);

			var	rt	=	obj.GetComponent<RectTransform>();	

			//	Set	the	object's	position	offscreen	

			var	pos	=	rt.position;	pos.x	=	-rt.rect.width;	rt.position	=	pos;	

			//	Move	the	object	to	the	center	of	the	screen	

			iTween.MoveTo(obj,	iTween.Hash("x",	Screen.width	/	2,	

																																		"easeType",	"easeInOutExpo",	

																																		"time",	1.5f));	

}

Before	we	move	anything	using	iTween,	we	will	first	set	the	position
of	our	object	(the	obj	parameter)	off-screen	by	setting	the	x	position.
It's	important	to	note	that	when	dealing	with	UI	elements	in	Unity,	by
default,	we	are	dealing	with	Screen	space,	which	as	you	can	recall
from	Chapter	3,	Mobile	Input/Touch	Controls,	means	means	that	the
position	(0,0)	is	the	bottom	left	of	the	screen	and	(Screen.width,
Screen.height)	is	the	top	right.
From	here,	we'll	see	that	we	are	calling	the	MoveTo	function	from
iTween.	This	takes	in	two	parameters,	the	first	being	the	object	we
wish	to	move	and	the	second	being	a	Hash	or	hash	table,	which	is	a
data	structure	that	creates	an	associative	array	such	that	certain	keys

will	be	mapped	to	certain	values.	In	iTween,	their	implementation
takes	in	sets	of	twos	with	the	first	being	a	property	and	the	second
being	the	value	we	want	it	to	be.

For	more	information	on	hash	tables,	check	out	http://en.wikipedia.org/wi
ki/Hash_table.
For	more	information	on	getting	started	with	iTween,	check	out	http:
//itween.pixelplacement.com/gettingstarted.php.

4.	 Now	that	we	have	this	function,	let's	actually	call	it.	In	the	Start	function	of
the	MainMenuBehaviour	script,	change	it	so	that	it	now	looks	as	follows:

virtual	protected	void	Start()

{

				//	Initialize	the	showAds	variable

				UnityAdController.showAds	=	(PlayerPrefs.GetInt("Show	Ads",	1)	

																																==	1);

	

				if	(facebookLogin	!=	null)

				{

							SlideMenuIn(facebookLogin);

				}

	

				//	Unpause	the	game	if	needed

				Time.timeScale	=	1;

	}

The	first	thing	we	do	is	bring	in	the	Facebook	login	menu	to	the
screen	by	calling	the	SlideMenuIn	function,	which	in	turn	will	tween	the
menu	to	the	center	of	the	screen.	iTween,	by	default,	makes	use	of	the
game's	Time.timeScale	property	to	scale	movement.	When	we	leave	the
game	from	the	pause	menu	and	go	back	to	the	main	menu,	the	game
will	still	be	paused.	This	ensures	that	the	game	will	be	unpaused	by
the	time	we	want	to	slide	this	menu	in.	When	we	start	building	the
pause	menu,	we'll	see	how	we	can	make	our	Tweens	work	even	when
the	game	is	paused.

5.	 While	the	code	should	work	fine	without	this,	iTween	suggests	that	you	call
the	Init	function	on	all	of	the	objects	you'd	like	to	move	in	the	Awake	function
before	it	is	used,	so	we	can	do	that	as	well.	Add	the	following	to	the	end	of
the	Awake	function:

if(facebookLogin	!=	null)

	{

						iTween.Init(facebookLogin);

	}

http://en.wikipedia.org/wiki/Hash_table
http://itween.pixelplacement.com/gettingstarted.php

	

	if(mainMenu	!=	null)

	{

						iTween.Init(mainMenu);

	}

6.	 Finally,	we	will	next	add	the	ability	so	that	when	we	select	a	button	to	go	to
another	menu	we	will	have	the	current	menu	slide	out:

///	<summary>	

///	Will	move	an	object	from	the	center	of	the	screen	

///	to	the	right	

///	</summary>	

///	<param	name="obj">The	UI	element	we	would	like	to	

///	move	</param>	

public	void	SlideMenuOut(GameObject	obj)	

{	

			var	rt	=	obj.GetComponent<RectTransform>();	

			//	Set	the	object's	position	offscreen	

			var	pos	=	rt.position;	pos.x	=	Screen.width	/	2;	rt.position	=	pos;	

			//	Move	the	object	to	the	center	of	the	screen	

			iTween.MoveTo(obj,	iTween.Hash("x",	Screen.width	+	(rt.rect.width),	

																																		"easeType",	"easeOutQuad",	

																																		"time",	1.5,	

																																		"oncomplete",	"OnHidden",	

																																		"oncompletetarget",	gameObject,	

																																		"oncompleteparams",	obj));	

}

Note	that	this	is	similar	to	the	previously	written	function,	except
now	we	are	also	using	some	new	parameters;	let's	also	add	in	the
OnHidden	function	that	we	are	using	in	the	preceding	script	to	be	called
when	the	tween	finishes:

void	OnHidden(object	obj)	

{

			GameObject	go	=	obj	as	GameObject;	

			if(go	!=	null)	

			{

						go.SetActive(false);	

			}

}

7.	 Then,	we	will	need	to	update	the	ShowMainMenu	function	to	actually	display	the
menus:

public	void	ShowMainMenu()

{

		if	(facebookLogin	!=	null	&&	mainMenu	!=	null)

		{

					mainMenu.SetActive(true);

					SlideMenuIn(mainMenu);

					SlideMenuOut(facebookLogin);

	

					//	No	longer	needed	as	menus	will	be	animating

					//facebookLogin.SetActive(false);

					//mainMenu.SetActive(true);

	

				if	(FB.IsLoggedIn)

				{

							//	Get	information	from	Facebook	profile

							FB.API("/me?fields=name",	HttpMethod.GET,	SetName);

							FB.API("/me/picture?width=256&height=256",	

														HttpMethod.GET,			SetProfilePic);

				}

		}

}

8.	 Save	the	script	and	dive	back	into	the	game:

As	you	can	see,	the	menus	will	not	fly	in	and	out	when	in	the	main	menu.

You	can	find	a	list	of	all	of	the	possible	parameters	you	can	pass	in	to	these
functions	at	http://www.pixelplacement.com/itween/documentation.php.

http://www.pixelplacement.com/itween/documentation.php

Adding	Tweens	to	the	pause	menu
	

Now	that	we	have	the	main	menu	finished,	let's	continue	doing	this	with	the
pause	menu:

1.	 Go	ahead	and	open	up	our	Gameplay	scene.	Update	the	PauseScreenBehaviour
script	to	have	the	following	implementation	of	SetPauseMenu:

///	<summary>	

///	Will	turn	our	pause	menu	on	or	off	

///	</summary>	

///	<param	name="isPaused"></param>	

public	void	SetPauseMenu(bool	isPaused)	

{

			paused	=	isPaused;	

			//	If	the	game	is	paused,	timeScale	is	0,	otherwise	1	

			Time.timeScale	=	(paused)	?	0	:	1;	

			if(paused)	

			{

							SlideMenuIn(pauseMenu);	

			}	

			else	

			{	

						SlideMenuOut(pauseMenu);	

			}	

}

Note	that	because	PauseMenuBehaviour	inherits	from	MainMenuBehaviour,	it
also	can	call	the	SlideMenuIn	and	SlideMenuOut	functions,	respectively,	as
long	as	they	are	marked	as	protected	or	public.

2.	 Now	if	we	run	the	game,	nothing	will	appear	to	happen	when	we	hit	the
pause	menu.	This	is	because—as	I	mentioned	previously—Tweens	are
scaled	by	Time.timeScale,	which	we	just	changed.	To	fix	this,	we	can	make
use	of	another	iTween	property	called	ignoretimescale,	which	we	will	set	to
true	in	both	functions	we	wrote	previously	in	the	MainMenuBehaviour:

///	<summary>	

///	Will	move	an	object	from	the	left	side	of	the	screen	

///	to	the	center	

///	</summary>	

///	<param	name="obj">The	UI	element	we	would	like	to	

///	move</param>	

public	void	SlideMenuIn(GameObject	obj)	

{

			obj.SetActive(true);

			var	rt	=	obj.GetComponent<RectTransform>();	

			//	Set	the	object's	position	offscreen	

			var	pos	=	rt.position;	pos.x	=	-rt.rect.width;	rt.position	=	pos;	

			//	Move	the	object	to	the	center	of	the	screen	

			iTween.MoveTo(obj,	iTween.Hash("x",	Screen.width	/	2,	"easeType",		

																																		"easeInOutExpo",	"time",	1.5f,	

																																		"ignoretimescale",	true));	

}	

///	<summary>	

///	Will	move	an	object	from	the	center	of	the	screen	

///	to	the	right	

///	</summary>	

///	<param	name="obj">The	UI	element	we	would	like	to	

///	move</param>	

public	void	SlideMenuOut(GameObject	obj)	

{

			var	rt	=	obj.GetComponent<RectTransform>();	

			//	Set	the	object's	position	offscreen	

			var	pos	=	rt.position;	

			pos.x	=	Screen.width	/	2;	

			rt.position	=	pos;	

			//	Move	the	object	to	the	center	of	the	screen	

			iTween.MoveTo(obj,	iTween.Hash("x",	Screen.width	+	(rt.rect.width),	

																																		"easeType",	"easeOutQuad",	

																																		"time",	1.5,	

																																		"oncomplete",	"OnHidden",	

																																		"oncompletetarget",	gameObject,	

																																		"oncompleteparams",	obj,	

																																		"ignoretimescale",	true));	

}

3.	 Save	both	scripts	and	dive	into	the	editor	and	try	it	out:

Perfect!	We	now	how	the	screen	flying	in	just	like	we	wanted	it	to.

	

	

	

Working	with	materials
Earlier,	we	always	used	the	default	material	for	everything	in	our	project.	This
has	worked	out	well	for	us,	but	it	may	be	a	good	idea	for	us	to	talk	a	little	bit
about	creating	custom	ones	to	improve	the	visuals	of	our	player.	Materials	are
instructions	on	how	to	draw	3D	objects	within	Unity.	They	consist	of	a	shader
and	properties	that	the	shader	uses.	A	shader	is	a	script	that	instructs	the
material	on	how	to	draw	things	on	the	object.

Shaders	are	a	huge	subject	that	entire	books	have	been	written	on,	so	we	can't
dive	too	much	into	them	here,	but	we	can	talk	about	working	with	one	that	is
included	in	Unity,	the	Standard	Shader.

1.	 First,	open	the	Gameplay	scene.	Then,	let's	create	a	new	folder	in	the
Project	window	called	Materials:

2.	 Open	up	the	Materials	folder	we	just	created,	and	then	once	inside,	create	a
new	Material	by	right-clicking	within	the	folder	and	then	selecting	Create	|
Material.	Name	this	new	material	to	Ball.

3.	 In	the	Inspector,	you'll	be	brought	to	the	Shader	menu	with	the	properties
for	the	Standard	shader.	Set	the	Metallic	property	to	0.8	and	the	Smoothness

property	to	0.6.

	

4.	 Now,	drag	and	drop	the	Ball	material	onto	our	player	object:

The	metallic	parameter	of	a	material	determines	how	metal-like	the	surface	is.
The	more	metallic	a	surface	is,	the	more	it	reflects	its	environment.	The
smoothness	property	determines	how	smooth	the	property	is;	a	higher
smoothness	will	have	light	bounce	off	it	uniformly,	making	the	reflections
clearer.

For	more	information	on	the	standard	shader	and	its	parameters,	check	out	
/docs.unity3d.com/Manual/StandardShaderMaterialParameters.html.

https://docs.unity3d.com/Manual/StandardShaderMaterialParameters.html

Using	post-processing	effects
One	of	the	ways	that	we	can	improve	the	visual	quality	of	our	game	with	little
effort	is	using	post-processing	effects	(previously	called	Image	Effects).	Post-
processing	is	the	process	of	applying	filters	and	other	effects	to	what	the	camera
will	draw	(the	image	buffer)	before	it	is	displayed	on	the	screen.

Unity	includes	a	number	of	effects	in	its	freely	available	post-processing	stack,
so	let's	go	ahead	and	add	it:

1.	 Open	up	the	Asset	Store	again,	and	search	for	Post	Processing	Stack	this	time:

2.	 Select	to	Download	it,	and	click	on	the	Accept	button	when	it	asks	you	to.
Once	it's	finished,	go	ahead	and	import	the	contents	into	our	project.

3.	 Switch	to	the	Scene	window,	and	then	from	the	Hierarchy	window,	select
our	Main	Camera	object	and	select	Add	Component	in	the	Inspector	and
type	in	PostProcessing;	then	move	your	mouse	over	the	Post	Processing
Behaviour	selection	and	then	click	to	add	the	script	to	your	project.

Note	that	this	component	requires	a	profile.	We	can	go	ahead	and	add
that	next.

4.	 We	can	create	a	new	post-processing	Profile	by	right-clicking	on	the	Project
window,	selecting	Create	|	Post	Processing	Profile,	and	naming	it
MobilePostProcessing:

5.	 Attach	this	object	to	the	Profile	property	of	the	Post	Processing	Behaviour
component	on	the	camera	and	then	start	the	game	and	pause	it.
Now,	there's	a	large	number	of	possible	effects	that	can	be	added	to	modify
how	the	game	looks.	Note	that	for	each	one	you	add,	the	frame	rate	of	the
devices	we	are	trying	to	run	our	game	on	will	be	decreased.	Keep	testing
your	device	with	these	options	and	note	how	it	works.

	

6.	 Go	to	the	Project	view	and	then	select	the	MobilePostProcessing	profile.	To
start	off,	toggle	the	Vignette	property.	Note	how	now	there	seems	to	be	a
blackened	edge	around	the	game.	We	will	increase	the	Smoothness	to	0.35
to	make	it	even	darker	by	clicking	on	the	top	right	of	the	section	to	expand
it:

Vignetting	is	the	term	used	for	the	darkening	and/or	desaturating
toward	the	edges	of	an	image	compared	to	the	center.	I	like	to	use	this
when	I	want	to	have	players	focus	on	the	center	of	the	screen.

7.	 Next,	check	the	Antialiasing	option.

Aliasing	is	an	effect	where	lines	appear	jagged	on	the	screen.	This
happens	if	the	display	we	are	trying	to	play	our	game	on	doesn't	have
a	high	enough	resolution	to	display	properly.	Anti-aliasing	attempts
to	reduce	that	appearance	by	attempting	to	combine	colors	nearby
these	lines	to	remove	the	prominence	at	the	cost	of	it	appearing
blurrier.

8.	 Toggle	Grain,	and	you'll	note	that	the	screen	has	become	a	lot	fuzzier.
While	not	a	great	idea	at	the	default	size,	decreasing	the	size	to	.1,
unchecking	colored,	and	decreasing	the	intensity	to	.15	will	help	with	the
appearance	of	things:

If	you've	been	to	a	movie	theater	that	still	uses	film,	you	may	have
noticed	how	there	were	little	specks	of	things	in	the	filmstock	while
playing	over	time.	The	grain	effect	simulates	this	film-grain,	causing
the	effect	to	become	more	pronounced	the	more	the	movie	is	played.
This	is	often	used	in	horror	games	to	obscure	the	player's	vision.

9.	 Another	property	to	check	is	Bloom,	which	makes	bright	things	even
brighter.	Decreasing	the	Threshold	to	.75	and	the	Soft	Knee	to	.1	will	help
brighten	things	up:

Bloom	attempts	to	mimic	the	imaging	artifacts	of	real-world	cameras,	where
things	in	areas	with	light	will	glow	along	the	edges,	thus	overwhelming	the
camera.	There	are	a	number	of	other	properties	to	look	into	and	adapt	your
project	to	look	just	the	way	you	want	it.	Check	out	more	information	on	the	post-
processing	stack	at	https://docs.unity3d.com/Manual/PostProcessing-Stack.html.

https://docs.unity3d.com/Manual/PostProcessing-Stack.html

Adding	particle	effects
The	game	itself	currently	works,	but	it	could	use	some	more	polish.	One	of	the
things	we	do	to	increase	the	polish	of	game	is	make	use	of	particle	systems;	let's
get	started:

1.	 First,	select	the	Player	in	the	Hierarchy	window	and	right-click	and	select
Effects	|	Particle	System.
This	will	make	this	system	a	child	of	the	player,	which	will	be	good	for
what	we	are	going	to	do.

2.	 Change	the	Start	Speed	to	0	and	the	Simulation	Space	to	World.

	

3.	 Open	up	the	Shape	section	by	clicking	on	it.	Change	the	Shape	to	Sphere
and	set	the	Radius	to	0	(it	will	automatically	change	to	0.01).

4.	 Then,	change	the	Start	Color	to	something	to	make	it	easy	to	see,	such	as
purple:

This	is	a	step	in	the	right	direction.The	particles	are	now	following	the	player,
but	there's	still	a	number	of	things	we	can	do	to	improve	this.

1.	 Instead	of	just	a	single	color,	we	can	change	it	so	that	we	pick	randomly
between	two	colors.	To	do	that,	go	to	the	right	side	of	the	Start	Color,	and
you'll	see	a	little	downward-facing	arrow.	Click	on	that	and	then	select
Random	Between	Two	Colors.	Then,	change	the	color	to	one	of	two	purple
colors	for	some	randomness.

2.	 Then,	next	to	Start	Size,	click	on	the	right	arrow	and	select	Random
Between	Two	Constants	and	set	the	values	between	0.5	and	1.2.

3.	 With	that,	set	the	Start	Speed	property	to	be	a	random	value	from	0	to	0.2.
4.	 Then,	open	up	the	Emission	section	and	set	the	Rate	Over	Time	property	to

100:

5.	 Save	the	game	and	play:

As	you	can	see,	the	particle	system	looks	great	on	both	PC	and	our	mobile
device.

If	you're	interested	in	exploring	more	details	on	things	that	can	be	done	to	polish
projects,	you	can	check	out	my	other	Unity	book,	Unity	5.x	Game	Development
Blueprints,	also	available	from	Packt	Publishing.

Summary
	

We	now	have	improved	our	game	by	a	huge	amount	by	only	doing	a	few	simple
things	to	improve	the	quality	of	the	title.	We	first	animated	our	menus	with	a	few
lines	of	code	using	Tweens	from	iTween	and	saw	how	a	few	lines	of	code	can
improve	the	visual	quality	of	our	UI	in	a	number	of	ways.	We	then	saw	how	to
create	materials	to	improve	the	visual	quality	of	our	ball	and	then	used	Post-
Processing	Effects	to	polish	the	contents	of	our	screen.	Finally,	we	discussed
how	to	use	particle	effects	to	create	a	nice	trail	following	our	player.

By	this	point,	our	game	is	finally	ready	for	the	big	leagues.	In	the	next	chapter,
we	will	explore	getting	our	game	onto	the	App	Store.

	

	

	

Game	Build	and	Submission
	

Over	the	course	of	this	book,	we	have	gone	over	many	aspects	of	building	games
for	mobile	devices.	The	last	step	in	our	game	development	journey	is	actually
releasing	the	game	out	into	the	wild	and	having	people	actually	play	it.	All	of
those	long	hours	of	hard	work	have	now	come	together	into	something	that	the
masses	will	be	able	to	enjoy.

When	doing	this,	there	are	a	number	of	things	to	keep	in	mind	and	this	is	exactly
what	we	will	be	discussing	next.

	

	

	

Chapter	overview
In	this	chapter,	we	will	go	over	the	process	of	submitting	your	game	to	the
Google	Play	or	iOS	App	Store	with	tips	and	tricks	to	help	the	process	go
smoother.

Your	objectives
	

This	chapter	will	be	split	into	a	number	of	topics.	It	will	contain	a	simple	step-
by-step	process	from	beginning	to	end.	Here	is	the	outline	of	our	tasks:

Building	a	release	copy	of	our	game
Putting	your	game	on	the	Google	Play	Store
Putting	your	game	on	the	Apple	App	Store
What's	next?

	

	

Building	a	release	copy	of	our	game
We	have	exported	copies	of	our	game	previously,	but	there	are	some	additional
steps	that	we	should	do	before	actually	releasing	the	game	on	an	App	Store:

1.	 The	first	step	will	be	to	confirm	you	are	currently	set	to	deploy	your	project
to	our	mobile	platform	of	choice.	You	can	check	this	by	going	into	the
Build	Settings	menu	by	navigating	to	File	|	Build	Settings.

2.	 From	there,	you	should	see	the	Unity	logo	to	the	right	of	the	Android	or
iOS	selection.	If	you	do	not,	select	it	and	then	click	on	the	Switch	Platform
button	and	wait	for	it	to	finish	reimporting	the	assets	for	the	project:

3.	 After	confirming	we	are	building	for	Android	or	iOS,	open	up	the	Player
Settings	menu	by	clicking	on	the	Player	Settings	button	from	the	menu	or
by	going	to	Edit	|	Project	Settings	|	Player.

4.	 If	you	haven't	done	so	already,	set	the	Company	Name	and	Product	Name
values	to	your	own	values.	In	my	case,	I	used	John	P.	Doran	and	Endless	Roller,
respectively.

5.	 You'll	then	see	a	Default	Icon	item.	Drag	and	drop	the	Hi-ResIcon	image	into
the	Assets	folder	and	then	drag	and	drop	it	into	the	Default	Icon	slot.	This
will	cause	the	Icon	section	of	the	Android	settings	to	automatically	scale	the
image	to	fit	whatever	device	you	are	targeting:

Of	course,	you	can	also	use	your	own	image,	and	you	can	use
transparency	if	you	would	like	to.

6.	 Under	the	Resolution	and	Presentation	section,	you	can	enable	or	disable
different	rotations	and	aspect	ratios	as	desired.	We	adjusted	the	game	to	fit
these,	but	this	may	be	useful	to	know	about	as	you	work	on	your	own
projects	or	you	wish	to	restrict	users	to	one	experience	or	another.

7.	 The	Splash	Screen	option	can	be	used	to	display	your	own	logo	in	addition
to	Unity's	if	you	have	the	Personal	edition	of	Unity.	If	you	have	pro,	you
may	disable	it	here.

8.	 Confirm	under	Other	Settings	that	the	Package	Name	property	is	not	set	to
the	default	values.	The	general	method	of	naming	is	com.CompanyName.GameName.

9.	 Next,	open	up	Publishing	Settings.	This	is	where	we	are	going	to	be	putting
in	information	about	who	our	game's	publisher	is	(in	this	case,	I'm	assuming
it's	you).	Whenever	you	build	a	game	for	Android,	you	need	a	Keystore,
which	allows	you	to	sign	off	on	the	game	saying	that	you're	allowed	to

build.	Click	on	the	Create	a	new	keystore	icon.	Then,	select	the	Browse
Keystore	button	and	select	a	location	for	this	file.

Keep	in	mind	where	this	is	going	to	be	located,	as	you	will	be	using	it
in	the	future	to	create	new	versions	of	your	game:

10.	 Then,	you'll	need	to	select	a	Keystore	password	textbox	that	you	will	need
to	know	as	you'll	be	using	it	over	and	over.	Afterwards,	in	the	Confirm
keystore	password	text	box,	you	should	enter	in	the	same	thing	as	you	did
before.

11.	 Next,	we	will	need	to	click	on	the	dropdown	under	Key	and	select	Create	a
new	key.	From	there,	you'll	need	to	add	in	the	same	information	as	before:
the	password	with	confirmation	and	then	your	name	and	other	information.
You	can	see	what	I	put	down	in	the	following	screenshot.	Once	finished,
click	on	the	Create	Key	button:

12.	 Afterwards,	from	Player	Settings,	click	on	the	Key	dropdown	again,	and
this	time,	select	the	keystore	we	created	and	then	enter	the	password	one
more	time:

With	that,	we	have	everything	set	up	that	we	need	to	put	the	game	up	on	the
store.

Putting	your	game	on	the	Google	Play
Store
Now	that	your	game	is	built,	you	will	need	to	actually	put	it	up	on	Google's	Play
Store.	To	put	games	up	on	the	Google	Play	store,	you	are	required	to	pay	a	one-
time	$25	dollar	fee.	This	may	or	may	not	seem	like	a	large	amount	of	money,	but
it	is	much	cheaper	than	the	iOS	App	Store	and	is	a	one-time	fee,	so	for	those
who	are	a	bit	more	budget-conscious,	you	may	wish	to	dive	into	Google	first	and
make	some	profit	before	moving	on	to	Apple's	store.

	

Setting	up	the	Google	Play	Console
	

The	first	step	is	to	gain	access	to	the	Google	Play	console;	this	is	what	allows
you	to	publish	an	Android	app	on	Google	Play	as	well	as	add	Google	Play	Game
Services	if	you'd	like:

1.	 Open	up	your	web	browser	and	go	to	https://play.google.com/apps/publish.

This	page	is	the	Google	Play	Console,	which	allows	you	to	add	apps
to	the	Google	Play	store.

2.	 If	you	aren't	signed	in	to	your	Google	account,	you'll	need	to	sign	in,
otherwise	you'll	be	brought	to	a	page	that	needs	you	to	agree	to	the
developer	agreement:

3.	 Scroll	down	and	you'll	see	a	checkbox	saying	that	I	agree	and	I	am	willing
to	associate	my	account	registration	with	the	Google	Play	Developer
distribution	agreement.	Read	the	agreement,	and	if	you	agree,	press	the

https://play.google.com/apps/publish

checkbox.

4.	 Afterwards,	click	on	the	Continue	to	Payment	button.	You	will	need	to	enter
in	your	credit	card	information	and	continue	until	the	payment	is	complete.
From	there,	you'll	see	a	window	saying	that	you'll	receive	a	receipt	by	mail
and	then	click	on	the	Continue	Registration	button.

5.	 You'll	then	need	to	enter	in	the	details	under	the	Developer	Profile.	This
will	include	the	developer	name,	the	email	you'd	like	to	be	contacted	by,
your	website	if	you	have	one,	and	a	contact	number	in	case	Google	needs	to
contact	you	about	your	apps.	You'll	optionally	be	offered	to	receive	emails
from	Google	Play,	but	it's	not	required	for	this	course.

6.	 Once	you	have	finished,	click	on	the	Complete	Registration	button.	If	all
goes	well,	you'll	be	brought	to	the	Google	Play	Console:

	

	

	

Publishing	an	app	on	Google	Play
Once	you	have	an	account,	you	can	now	start	the	process	of	actually	putting	a
game	up	on	the	Google	Play	store.

1.	 Click	on	the	PUBLISH	AN	ANDROID	APP	ON	GOOGLE	PLAY	button.
You'll	be	brought	to	a	page	where	you	need	to	select	a	Default	language	and
then	the	Title	of	your	game.	Afterwards,	click	on	the	Create	button:

2.	 You'll	then	be	brought	to	a	page	where	you'll	need	to	fill	in	information
about	your	game,	starting	with	a	Short	description	and	then	a	more	detailed
Full	description:

3.	 You'll	then	need	to	provide	graphical	assets	to	be	used	to	display	your
game.	You	are	required	to	have	at	least	two	screenshots	and	then	some
additional	icons	and	graphics:

4.	 You'll	then	need	to	include	some	more	images	for	icons	and	other	featured
graphics.	The	ones	with	an	*	are	required.	You	can	find	some	already	made

ones	in	the	example	code	with	this	book,	but	I	suggest	that	you	create	your
own	once	you've	customized	this	game	to	your	liking:

5.	 Now,	scroll	down	and	you'll	need	to	select	an	Application	type	(I	picked
Games)	and	a	Category	(I	chose	Arcade).

6.	 Finally,	confirm	your	contact	info	and	check	whether	you	have	a	Privacy
Policy	or	not.

7.	 Afterwards,	scroll	all	the	way	to	the	top	and	then	click	on	the	SAVE
DRAFT	button:

8.	 Next,	click	on	the	Pricing	&	distribution	option	on	the	left-hand	side.	By
default,	you	need	to	decide	whether	you	want	your	app	to	be	paid	or	free.
I'm	going	to	go	with	free,	but	if	you	click	on	the	set	up	a	merchant	account
button,	you	can	take	payment	as	well.

9.	 You'll	need	to	scroll	down	and	select	the	countries	you'd	like	to	have	people
be	able	to	download	your	game	in.	Generally,	unless	we	are	doing	some
kind	of	testing	or	beta	program,	we	will	generally	hit	the	Available	button
to	allow	the	entire	world	to	play:

10.	 Scroll	down	and	you'll	need	to	answer	whether	your	game	is	directed
toward	children	under	13	and	also	state	whether	your	game	has	ads	or	not.
In	my	case,	the	app	is	not	directed	toward	children	and	the	game	contains
ads:

11.	 Now,	scroll	down	till	you	get	to	the	Consent	section	and	check	the	final	two

options	after	reading	and	agreeing	to	their	stipulations:

12.	 At	the	end,	scroll	all	the	way	up	and	click	on	the	SAVE	DRAFT	button
again.

13.	 Next,	we	will	need	to	bring	in	our	APK	file	to	the	store.	Click	on	the	App
releases	section.	From	there,	we	need	to	select	what	version	of	the	game	we
want	to	release.	Production	means	that	the	game	is	completely	done,	but
assuming	we	are	looking	for	feedback	and/or	wanting	to	make	the	project
better,	we	will	want	to	select	Beta	or	Alpha.	I'll	go	ahead	and	select	Beta
and	click	on	the	Manage	Beta	option:

14.	 From	there,	click	on	the	Create	Release	button.	You'll	then	be	given	the
opportunity	to	enroll	the	app	into	Google	Play	App	Signing.	Go	ahead	and
click	on	Continue	and	accept	the	terms	if	you	would	like.	Afterward,	you
will	be	brought	to	a	screen	to	allow	you	to	add	an	APK:

15.	 Click	on	the	Browse	Files	button	and	go	to	the	folder	you've	exported	your

game	to.

If	you	exported	your	game	like	we	did	in	Chapter	2,	Setup	for	Android
and	iOS	Development,	you	may	notice	an	error	like	the	following:

Ensure	that	you	follow	the	instructions	in	the	Building	a	Release
Version	of	our	Game	section.

16.	 If	all	goes	well,	you'll	be	brought	to	a	screen	that	looks	as	follows:

17.	 If	you	scroll	down,	you	should	see	a	version	of	the	game	on	the	screen.
You'll	be	asked	what	is	new	in	this	release.	I	wrote	initial	release	and	then
clicked	on	the	Save	button.

18.	 Next,	click	on	the	Content	rating	button.	You	may	be	required	to	put	in	a
physical	address.	If	so,	click	on	the	Account	details	page	and	fill	it	out,	and
then	click	on	the	Continue	button	on	this	page:

19.	 From	here,	you'll	need	to	enter	in	your	email	address	again	and	then	select
your	app	category.	In	our	case,	it's	likely	Game:

20.	 Then,	answer	each	of	the	questions	offered	until	you	arrive	at	the	Save
Questionnaire	button	that	you	will	click	and	then	click	on	the	Calculate
Rating	button.

21.	 Afterwards,	you	should	see	a	calculated	rating	for	you	to	note:

22.	 Scroll	down	all	the	way	to	the	bottom	and	then	click	on	the	Apply	Rating
button.	If	all	goes	well,	you	should	notice	that	the	top	of	the	screen	says
Ready	to	publish.	Click	on	that	button:

23.	 Click	on	the	button	that	says	Manage	Releases.	From	there,	scroll	down	to
the	Beta	section	again	and	then	click	on	the	Manage	Beta	button.	Here,

you're	able	to	select	your	method	of	Open	Beta	testing.

	

24.	 Under	Choose	a	testing	method,	select	Open	Beta	Testing.	Afterward,	you
can	select	a	Feedback	Channel	to	how	you	want	people	to	provide
feedback.	Afterwards,	click	on	the	SAVE	button:

25.	 Next,	return	to	the	App	Releases	page	and	click	on	the	Edit	Release	button
under	Beta.	From	there,	click	on	the	Review	button	on	the	bottom	of	the
screen:

26.	 Finally,	scroll	all	the	way	down,	and	you'll	see	the	START	ROLLOUT	TO
BETA	option;	click	on	it:

With	that,	our	game	is	currently	pending	publication:

After	waiting	a	moment,	your	game	should	be	published	and	you	can	share	it
with	the	world.	If	you	go	to	the	Manage	testers	section,	you	should	notice	an
Opt-in	URL	that	you	can	share	and	have	others	play:

Putting	your	game	on	the	Apple	iOS
App	Store
Just	like	the	Google	Play	store,	there	is	an	additional	fee	to	put	your	game	on	the
App	Store.	Unlike	the	Google	Play	store,	the	fee	is	$99	plus	tax	every	year.
However,	a	lot	of	people	believe	that	having	their	titles	on	iOS	devices	is	worth
the	extra	cost.	In	this	section,	we	will	go	through	the	process	of	getting	our	game
up	onto	the	App	Store.

	

Apple	Developer	setup	and	the
creation	of	a	provisioning	profile
In	order	to	deploy	to	an	iOS	device,	you	are	required	to	be	on	a	Mac	computer,
but	before	we	go	onto	the	iTunes	store,	we	first	need	to	have	all	of	the
certificates	and	permissions	figured	out	ahead	of	time.

1.	 With	that	in	mind,	on	a	Mac	computer,	go	to	developer.apple.com.	From	there,
fill	in	your	Apple	ID	and	Password	and	click	on	the	Sign	in	button:

If	you	have	a	two-factor	identification,	you	may	need	to	verify	that
you	are	yourself.

2.	 From	there,	click	on	Accounts.	Now,	at	this	point,	you	will	need	to	make
the	payment	for	the	$99	annual	fee.	This	process	should	be	fairly
straightforward,	and	once	you	have	finished	that	aspect	of	things,	you	will

http://developer.apple.com

come	to	a	page	similar	to	the	following:

3.	 Select	the	Certificates,	Identifiers	&	Profiles	screen	to	start	the	process	of
creating	apps.	If	you	just	paid	the	$99	fee,	you	may	see	an	error	stating	that
The	selected	team	does	not	have	a	program	membership	that	is	eligible	for
this	feature.	If	you	need	assistance,	please	contact	Apple	Developer
Program	Support.	https://developer.apple.com/support,	as	you	can	note	in
the	following	screenshot:

Do	not	worry,	that	just	means	that	the	payment	hasn't	processed	from
Apple's	end	yet.	Try	again	in	about	30	minutes	to	an	hour,	and	the
screen	should	work	okay.

4.	 We	will	need	to	set	up	some	certificates	to	allow	us	to	export	to	the	iOS
App	Store.	From	the	All	certificates	page,	click	on	the	top	left	+	sign	on	the
screen:

5.	 When	the	page	asks	what	kind	of	certificate	we	need,	select	the	App	Store
and	Ad	Hoc	option	under	the	Production	section	and	then	click	on
Continue:

6.	 Next,	we	need	to	create	a	Certificate	Signing	Request	(CSR).	You'll	be
brought	to	a	page	that	goes	through	the	process	of	creating	one,	but,	in	our
case,	we	will	start	off	by	opening	the	Applications\Utilities	folder	on	our	Mac
and	opening	the	Keychain	Access	program.

7.	 From	there,	go	to	Keychain	Access	|	Certificate	Assistant	|	Request	a
Certificate	from	a	Certificate	Authority...	:

8.	 Once	there,	fill	in	the	information	with	your	email	address	in	the	User
Email	Address	property,	then	for	the	Common	Name,	put	in	a	name,	leave
the	CA	Email	Address	blank;	then,	under	the	Request	is:	property,	select
Saved	to	disk:

9.	 Then,	click	on	the	Continue	button	and	select	a	spot	to	save	it.	I	personally
used	my	Desktop,	but	you	can	use	anywhere	as	long	as	you	remember
where	it	is	later	on.	Afterwards,	it	will	state	that	the	request	has	been
created	on	the	disk.	Go	ahead	and	click	on	Done	and	then	return	to	your
web	browser:

10.	 Scroll	down	and	then	click	on	the	Continue	button.	From	there,	you'll	be
brought	to	the	Generate	your	certificate	page.	Click	on	the	Choose	File
button	and	then	select	the	file	we	just	created.	Then,	click	on	the	Continue
button:

11.	 You'll	then	be	brought	to	a	screen	saying	that	your	certificate	is	ready.	Go
ahead	and	click	on	the	Download	button	and	save	it	to	your	disk:

12.	 Afterwards,	double-click	on	the	.cer	file	to	install	the	data	into	Keychain
access.	You'll	be	asked	whether	you	want	to	add	the	certificates;	go	ahead
and	click	on	Add:

13.	 The	next	step	is	to	create	an	App	ID.	To	do	this,	go	to	the	left-side	bar	and
click	on	the	iOS	App	IDs	section.	I	currently	have	one	App	ID	already	due
to	Xcode	opening	our	Endless	Roller	project,	which	we	can	customize	by

clicking	on	the	Edit	button;	however,	if	you	didn't	do	so	earlier	and	have	a
different	Bundle	ID	than	the	ones	listed,	let's	go	through	the	details	next:

14.	 We	can	create	a	new	ID	by	clicking	on	the	+	button	on	the	top-right	corner
of	the	screen.

15.	 From	there,	under	App	ID	Description,	put	in	the	name	of	your	game--in
my	case,	I	used	Endless	Roller.	Then,	under	the	App	ID	Suffix,	put	in	the
Bundle	ID	in	the	same	manner	as	it	was	in	Unity.	In	my	case,	it	was
com.JohnPDoran.EndlessRoller.	Under	App	Services,	select	the	options	that	you
are	using,	but,	in	this	case,	we're	not,	so	we	can	just	scroll	all	the	way	down
and	then	click	on	the	Continue	button:

In	this	case,	this	would	not	work	due	to	there	already	being	an	ID
with	this	specific	Bundle	ID.	This	is	why	you	need	to	have	unique
ones.	With	that	in	mind,	I	just	went	in	and	edited	the	original	App	ID
to	Endless	Roller	and	then	completed	it.

16.	 The	last	aspect	we	will	need	to	set	up	here	is	a	Provisioning	Profile.	To	do
this,	click	on	the	All	button	under	the	Add	iOS	Provisioning	Profiles
section.	From	there,	click	on	the	+	on	the	top	left.	Under	Distribution,	you
are	going	to	select	App	Store	and	then	click	on	Continue:

17.	 From	there,	you'll	need	to	select	your	App	ID.	Endless	Roller	may	be
selected,	otherwise,	search	for	it	in	the	drop-down	list	and	select	it,	and	then
click	on	Continue:

18.	 Then,	select	your	certificate	and	click	on	Continue.
19.	 Finally,	we	will	need	to	put	in	a	Profile	Name--I'll	put	in	Endless	Roller--and

then	click	on	Continue:

20.	 You'll	be	brought	to	a	page	with	the	profile.	Go	ahead	and	download	it	and
keep	it	safe	as	we'll	need	to	use	it	later:

With	that,	our	provisioning	profile	is	ready.

Adding	an	app	onto	iTunes	Connect
Now	that	we	have	the	provisioning	profile,	we	can	actually	put	our	app	on	the
store;	to	do	that,	perform	the	following	steps:

1.	 In	your	web	browser,	go	to	itunesconnect.apple.com	and	click	on	the	My	Apps
button:

If	you	intend	to	sell	your	apps,	you	will	also	be	required	to	go	to	the
Agreements,	Tax,	and	Banking	section	and	put	in	your	banking
information.

2.	 From	there,	go	to	the	top-left	corner	and	click	on	the	+	icon	to	add	a	new
app	to	our	profile	by	selecting	New	App:

3.	 On	this	menu,	fill	in	iOS	as	your	Platforms	and	put	the	name	of	your	game
under	Name.	Apple	requires	each	name	to	be	unique,	so	keep	in	mind	you
will	not	be	able	to	use	Endless	Roller	again.	Under	Primary	Language,	select
English	(U.S.)	and	then	select	your	Bundle	ID	and	then	under	SKU	put	in
an	identifier	(I	used	Endless	Roller).	Then,	click	on	the	Create	button:

4.	 You'll	then	be	brought	to	the	App	Information	screen.	From	there,	change
the	Category	to	Games	and	then	under	the	Subcategory,	put	in	Arcade,	then
click	on	Save:

5.	 Next,	go	to	the	1.0	Prepare	for	Submission	section	and	click	on	it	to	start
filling	in	the	information	for	the	title.	Start	off	by	filling	in	the	Description
textbox	with	the	information	that	you	used	earlier	on	Google	Play.	Then,
under	Keywords,	put	in	possible	things	that	people	would	search	for	to	find
your	game:

6.	 We'll	then	need	to	provide	an	App	Icon	to	be	used.	The	image	must	be	1024
x	1024	ina	PNG	format.	Under	Copyright,	go	ahead	and	put	your	name.

7.	 Lastly,	you'll	need	to	provide	some	screenshots	of	your	game	to	use.	If	you
click	on	the	iOS	Screenshot	Properties	page,	you'll	see	details	on	how	your
screenshots	should	be	created	(specifically,	the	size	of	the	images).	The	one
used	in	this	chapter	is	for	the	iPhone	5.5"	display,	but	you	can	also	submit
for	the	optional	5.8	one	to	support	the	iPhone	X:

8.	 Note	that	in	the	Build	section,	it	states	that	you	need	to	submit	your	build
using	Xcode.	Let's	go	ahead	and	do	that	after	we	finish	up	the	last	step.

9.	 Go	into	the	Pricing	and	Availability	section	and	select	a	price.	In	my	case,
I'll	be	using	USD	0	(Free),	but,	as	always,	you	can	pick	what	you'd	like.
Since	there's	no	cost	under	the	Volume	Purchase	Program,	go	ahead	and
select	Available	with	no	discount	since	there's	no	reason	for	there	to	be	one,
and	then	click	on	the	Save	option:

10.	 Once	all	of	the	information	is	filled	in,	go	ahead	and	open	up	Xcode	again
and	your	exported	project	(follow	the	same	steps	as	in	Chapter	2,	Setup	for
Android	and	iOS	Development).	From	there,	go	to	Product	|	Archive	and
wait	for	it	to	finish:

11.	 This	generally	takes	a	while,	so	wait	for	it	to	complete.	You	may	be	asked
to	use	an	access	key;	go	ahead	and	click	on	the	Allow	button.

12.	 Upon	finishing,	you	should	be	brought	to	the	following	menu.	Go	ahead
and	select	the	Upload	to	App	Store...	button:

13.	 You'll	be	asked	to	select	some	options.	In	general,	use	the	default	options,
and	afterward,	it	will	give	you	an	.ipa	file	uploaded	to	the	store.	Before
uploading,	it	will	give	you	one	last	look	with	information	about	each	aspect
of	the	project.	Go	ahead	and	click	on	the	Upload	button	and	wait	for	it	to
finish:

This	will	not	show	up	immediately	on	iTunes	Connect;	you	may	have	to	wait	a
moment	or	a	couple	of	hours	before	it's	updated.	However,	once	it	is	ready,	you'll
see	it	under	the	build	section	we	mentioned	earlier.

14.	 Once	it's	loaded	up,	you	should	be	able	to	click	on	the	Select	a	build	button
before	you	submit	your	app	option.

15.	 From	there,	select	the	build	we	created	and	then	click	on	the	Done	button:

16.	 Then,	click	on	the	Save	button.	Once	finished	with	everything	and	double-
checking	all	of	your	information,	you	can	go	ahead	and	click	on	the	Submit
for	Review	button	to	wait	for	feedback	from	Apple.

Generally,	it	takes	up	to	3-4	weeks	for	first-time	developers	to	receive	feedback,
although	it	can	be	longer	or	shorter,	depending	on	the	season.	As	you	release
more	and	more	titles,	it	takes	less	time	each	time	around.	If	approved,	you'll
receive	an	email	that	lets	you	know	that	the	app	is	up	or	they	will	have	details	on
things	needed	to	be	approved	before	being	placed	on	the	store.

Summary
With	that,	you	learned	how	to	publish	our	games	on	both	the	Google	Play	and
Apple	iOS	App	Store.	You	first	learned	how	to	build	a	release	copy	of	your
game,	then	learned	how	to	put	the	game	onto	Google	Play	by	setting	up	the
Google	Play	Console	and	then	finally	to	publish	your	app	on	the	store.You	then
learned	how	to	put	a	copy	of	the	iOS	version	of	your	game	on	the	App	Store	and
all	of	the	setup	involved	there.

I	hope	that	you've	enjoyed	this	exploration	of	features	and	that	you	continue	to
explore	the	possibilities	of	this	space.	Feel	free	to	let	me	know	what	you're	up	to
and	I	wish	to	see	your	projects	up	on	the	market	and	see	what	you	come	up	with.

	

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	Building Your Game
	Chapter overview
	Your objectives

	Setting up the project
	Creating the player
	Improving our scripts with attributes and XML comments
	Using attributes
	The Tooltip attribute
	The Range attribute
	The RequireComponent attribute

	XML comments
	Putting it all together

	Having the camera following our player
	Creating a basic tile
	Making it endless
	Creating obstacles
	Summary

	Setup for Android and iOS Development
	Chapter overview
	Our objectives

	Introduction to build settings
	Building a project for PC
	Installing the Java Development Kit (JDK)
	Installing the Android SDK

	Exporting a project for Android
	Putting the project on your Android device
	Unity for iOS setup and Xcode installation
	Building a project for iOS
	Summary

	Mobile Input/Touch Controls
	Chapter overview
	Our objectives

	Using mouse input
	Moving via touch
	Implementing a gesture
	Using the accelerometer
	Detecting touch on game objects
	Summary

	Resolution Independent UI
	The chapter overview
	Our objectives

	Creating a title screen
	The Rect Transform component
	Anchors
	Pivots

	Selecting different aspect ratios

	Working with buttons
	Adding a pause menu
	Pausing the game
	Summary

	Advertising Using Unity Ads
	Chapter overview
	Your objectives

	Unity Ads setup
	Displaying a simple Ad
	Utilizing ad callback options
	Opt-in advertisements with rewards
	Adding in a cooldown
	Summary

	Implementing In-App Purchases
	Chapter overview
	Your objectives

	Setting up Unity IAP
	Creating our first purchase
	Adding button to restore purchases
	Configuring purchases for the stores of your choice
	Summary

	Getting Social
	Chapter overview
	Your objectives

	Adding a score system
	Sharing high scores via Twitter
	Downloading and installing Facebook's SDK
	Logging in to our game via Facebook
	Displaying Facebook name and profile pic
	Summary

	Using Unity Analytics
	Chapter overview
	Your objectives

	Setting up analytics
	Tracking custom events
	Using the AnalyticsTracker component
	Customizing events through code

	Working with the funnel analyzer
	Tweaking properties with remote settings
	Summary

	Making Your Title Juicy
	Chapter overview
	Your objectives

	Animation using iTween
	iTween setup
	Creating a Simple Tween

	Adding Tweens to the pause menu
	Working with materials
	Using post-processing effects
	Adding particle effects
	Summary

	Game Build and Submission
	Chapter overview
	Your objectives

	Building a release copy of our game
	Putting your game on the Google Play Store
	Setting up the Google Play Console
	Publishing an app on Google Play

	Putting your game on the Apple iOS App Store
	Apple Developer setup and the creation of a provisioning profile
	Adding an app onto iTunes Connect

	Summary

